Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1664(2024)
Polypyrrole Modified Iron Oxide Nanosheets for Improving Li-S Battery Electrochemical Performance
[1] [1] DENG R Y, WANG M, YU H Y, et al. Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities[J]. Energy Environ Mater, 2022, 5(3): 777-799.
[2] [2] ZHOU L, DANILOV D L, QIAO F, et al. Sulfur reduction reaction in lithium-sulfur batteries: Mechanisms, catalysts, and characterization[J]. Adv Energy Mater, 2022, 12(44): 1-51.
[3] [3] LI Y, ZHANG J W, CHEN Q G, et al. Emerging of heterostructure materials in energy storage: A review[J]. Adv Mater, 2021, 33(27): e2100855.
[4] [4] JANA M, XU R, CHENG X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries[J]. Energy Environ Sci, 2020, 13(4): 1049-1075.
[5] [5] ZHOU L, DANILOV D L, EICHEL R A, et al. Host materials anchoring polysulfides in Li-S batteries reviewed[J]. Adv Energy Mater, 2021, 11(15): 1-49.
[6] [6] ZHAO M, LI B Q, ZHANG X Q, et al. A perspective toward practical lithium-sulfur batteries[J]. ACS Cent Sci, 2020, 6(7): 1095-1104.
[7] [7] XIANG H Y, DENG N P, ZHAO H J, et al. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: Progress and prospects[J]. J Energy Chem, 2021, 58: 523-556.
[9] [9] CHEN Yuqing, YANG Xiaofei, YU Ying, et al. Energy Storage Sci Technol, 2017, 6(2): 169-189.
[10] [10] SUN H T, ZHU J, BAUMANN D, et al. Hierarchical 3D electrodes for electrochemical energy storage[J]. Nat Rev Mater, 2018, 4(1): 45-60.
[11] [11] SULTANOV F, MENTBAYEVA A, KALYBEKKYZY S, et al. Advances of graphene-based aerogels and their modifications in lithium-sulfur batteries[J]. Carbon, 2023, 201: 679-702.
[12] [12] ZHENG J H, GUO G N, LI H W, et al. Elaborately designed micro-mesoporous graphitic carbon spheres as efficient polysulfide reservoir for lithium-sulfur batteries[J]. ACS Energy Lett, 2017, 2(5): 1105-1114.
[13] [13] CAO Z X, JIA J Y, CHEN S N, et al. Integrating polar and conductive Fe2O3-Fe3C interface with rapid polysulfide diffusion and conversion for high-performance lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39772-39781.
[14] [14] CHENG M H, YAN R, YANG Z, et al. Polysulfide catalytic materials for fast-kinetic metal-sulfur batteries: Principles and active centers[J]. Adv Sci, 2022, 9(2): e2102217.
[15] [15] LIU G X, FENG K, CUI H T, et al. MOF derived in situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable Lithium-sulfur batteries[J]. Chem Eng J, 2020, 381: 122652.
[16] [16] SUN W W, LI Y J, LIU S K, et al. Mechanism investigation of iron selenide as polysulfide mediator for long-life lithium-sulfur batteries[J]. Chem Eng J, 2021, 416: 129166.
[17] [17] YANG Z Z, WANG H Y, LU L, et al. Hierarchical TiO2 spheres as highly efficient polysulfide host for lithium-sulfur batteries[J]. Sci Rep, 2016, 6: 22990.
[18] [18] LIN H B, YANG L Q, JIANG X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy Environ Sci, 2017, 10(6): 1476-1486.
[19] [19] SONG Y Z, ZHAO W, KONG L, et al. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy Environ Sci, 2018, 11(9): 2620-2630.
[20] [20] ZHANG X L, NI Z W, BAI X X, et al. Hierarchical porous N-doped carbon encapsulated fluorine-free MXene with tunable coordination chemistry by one-pot etching strategy for lithium-sulfur batteries[J]. Adv Energy Mater, 2023, 13(29): 1-10.
[22] [22] WANG Lei, CUI Xiang, DONG Hanghang, et al. J Chin Ceram Soc, 2022, 50(1): 134-147.
[23] [23] ZHANG Y G, LIU J B, WANG J Y, et al. Frontispiece: Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries[J]. Angew Chem Int Ed, 2021, 60(51): 26622-26629.
[24] [24] PANG Q, KUNDU D P, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nat Commun, 2014, 5: 4759.
[25] [25] WANG M, TAN S Y, KAN S T, et al. In-situ assembly of TiO2 with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery[J]. J Energy Chem, 2020, 49: 316-322.
[26] [26] WANG P Y, ZENG R, YOU L, et al. Graphene-like matrix composites with Fe2O3 and Co3O4 as cathode materials for lithium-sulfur batteries[J]. ACS Appl Nano Mater, 2020, 3(2): 1382-1390.
[27] [27] ZHANG Y Q, MA C, HE W T, et al. MXene and MXene-based materials for lithium-sulfur batteries[J]. Prog Nat Sci Mater Int, 2021, 31(4): 501-513.
[28] [28] ZHAO Z X, YI Z L, LI H J, et al. Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries[J]. Nano Energy, 2021, 81: 105621.
[29] [29] KAY A, CESAR I, GR?TZEL M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films[J]. J Am Chem Soc, 2006, 128(49): 15714-15721.
[30] [30] ZHENG Z, CHEN Y Z, SHEN Z X, et al. Ultra-sharp α-Fe2O3 nanoflakes: Growth mechanism and field-emission[J]. Appl Phys A, 2007, 89(1): 115-119.
[31] [31] CHEN J, XU L, LI W, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Adv Mater, 2005, 17(5): 582-586.
[32] [32] REDDY M ?, YU T, SOW C ?, et al. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries[J]. Adv Funct Mater, 2007, 17(15): 2792-2799.
[33] [33] ZHENG Y H, CHENG Y, WANG Y S, et al. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance[J]. J Phys Chem B, 2006, 110(7): 3093-3097.
[34] [34] LIU H D, CHEN Z L, ZHOU L, et al. Interfacial charge field in hierarchical yolk-shell nanocapsule enables efficient immobilization and catalysis of polysulfides conversion[J]. Adv Energy Mater, 2019, 9(37): 1-12.
[35] [35] LU Y, QIN J L, SHEN T, et al. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries[J]. Adv Energy Mater, 2021, 11(42): 1-10.
[36] [36] ZHENG C, NIU S Z, LV W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 306-312.
[37] [37] YAO Y J, ZHANG H M, WANG X H. Polyaniline: An effective suppressor against diffusion and dissolution of polysulfides in Li-S battery[J]. J Solid State Electrochem, 2019, 23(8): 2559-2567.
[38] [38] LI F, KAISER M R, MA J M, et al. Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries[J]. Energy Storage Mater, 2018, 13: 312-322.
[39] [39] ANILKUMAR K M, JINISHA B, MANOJ M, et al. Layered sulfur/PEDOT: PSS nano composite electrodes for lithium sulfur cell applications[J]. Appl Surf Sci, 2018, 442: 556-564.
[40] [40] ZENG S B, LI X, GUO F, et al. A multilayered flexible electrode with high sulfur loading for high-performance lithium-sulfur batteries[J]. Electrochim Acta, 2019, 320: 134571.
[41] [41] HONG X D, LIU Y, LI Y, et al. Application progress of polyaniline, polypyrrole and polythiophene in lithium-sulfur batteries[J]. Polymers, 2020, 12(2): 331.
[42] [42] ZHANG Q, HUANG Q H, HAO S M, et al. Polymers in lithium-sulfur batteries[J]. Adv Sci, 2022, 9(2): e2103798.
[43] [43] LI S S, LI H, ZHU G R, et al. Improved electrochemical performance of Li-S battery with carbon and polymer-modified cathode[J]. Appl Surf Sci, 2019, 479: 265-272.
[44] [44] WU J, DAI Y, PAN Z J, et al. Co3O4 hollow microspheres on polypyrrole nanotubes network enabling long-term cyclability sulfur cathode[J]. Appl Surf Sci, 2020, 510: 145529.
[45] [45] CHEN L Q, YANG X F, CHEN J, et al. Continuous shape- and spectroscopy-tuning of hematite nanocrystals[J]. Inorg Chem, 2010, 49(18): 8411-8420.
[46] [46] GOPAL R A, SONG M, YANG D, et al. Synthesis of hierarchically structured ?-Fe2O3-PPy nanocomposite as effective adsorbent for cationic dye removal from wastewater[J]. Environ Pollut, 2020, 267: 115498.
[47] [47] STEJSKAL J, TRCHOVá M. Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity[J]. Colloid Polym Sci, 2020, 298(3): 319-325.
[48] [48] DEIVANAYAKI S, PONNUSWAMY V, MARIAPPAN R, et al. Synthesis and characterization of polypyrrole/TiO2 composites by chemical oxidative method[J]. Optik, 2013, 124(12): 1089-1091.
[49] [49] RAMESAN M T. Preparation and properties of Fe3O4/polypyrrole/poly(pyrrole-co-acrylamide) nanocomposites[J]. Int J Polym Mate Polym Biomateri, 2013, 62(5): 277-283.
[50] [50] LI H, HAN Z H, LIU F S, et al. Esterification catalyzed by an efficient solid acid synthesized from PTSA and UiO-66(Zr) for biodiesel production[J]. Faraday Discuss, 2021, 231(0): 342-355.
[51] [51] WAN C C, LI J. Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole[J]. Carbohydr Polym, 2017, 161: 158-165.
[52] [52] WANG C, YANG M, LIU L H, et al. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature[J]. J Colloid Interface Sci, 2020, 560: 312-320.
[53] [53] HU Y, CHEN W, LEI T Y, et al. Strategies toward high-loading lithium-sulfur battery[J]. Adv Energy Mater, 2020, 10(17): 1-19.
[54] [54] CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Adv Mater, 2021, 33(29): e2003666.
[56] [56] RAO Zhixin, CHEN Zhi, LIANG Danni, et al. J Chin Ceram Soc, 2022, 50(1): 9-15.
[57] [57] GUEON D, HWANG J T, YANG S B, et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano, 2018, 12(1): 226-233.
[58] [58] CHUNG S H, LUO L, MANTHIRAM A. TiS2-polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium-sulfur batteries[J]. ACS Energy Lett, 2018, 3(3): 568-573.
[59] [59] CHEN G L, ZHONG W T, LI Y S, et al. Rational design of TiO-TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2019, 11(5): 5055-5063.
[60] [60] ZHANG C, LIN Y, LIU J. Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium-sulfur batteries[J]. J Mater Chem A, 2015, 3(20): 10760-10766.
[61] [61] LIANG X, HART C, PANG Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat Commun, 2015, 6: 5682.
[62] [62] HE J R, LUO L, CHEN Y F, et al. Yolk-shelled C@Fe3 O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Adv Mater, 2017, 29(34): 1702707.
[63] [63] LI M H, JI S, MA X G, et al. Synergistic effect between monodisperse Fe3O4 nanoparticles and nitrogen-doped carbon nanosheets to promote polysulfide conversion in lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2022, 14(14): 16310-16319.
Get Citation
Copy Citation Text
LI Shunan, QIAO Mingtao, SHEN Kaifei, ZHANG Yulong, SI Weibin, LEI Wanying, LEI Xiping. Polypyrrole Modified Iron Oxide Nanosheets for Improving Li-S Battery Electrochemical Performance[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1664
Category:
Received: Oct. 10, 2023
Accepted: --
Published Online: Aug. 20, 2024
The Author Email: Mingtao QIAO (mtqiao@xauat.edu.cn)