Acta Photonica Sinica, Volume. 52, Issue 8, 0817002(2023)
Magnetic Resonance Imaging Brain Tumor Segmentation Using Multiscale Ghost Generative Adversarial Network
[1] S BAKAS, H AKBARI, A SOTIRAS et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data, 4, 1-13(2017).
[2] Xingbin QI, Li ZHAO, Xuemei LI et al. Automatic segmentation of T2 weighted brain MRI based on histogram gradient calculation. Application Research of Computers, 32, 1576-1579(2015).
[3] S NEMA, A DUDHANE, S MURALA et al. RescueNet:AN unpaired GAN for brain tumor segementation. Biomedical Signal Processing and Control, 55, 101641(2020).
[4] Y ZHANG, B J MATUSZEWSKI, L K SHARK. A novel medical image segmentation mentation method using dynamic programming, 69-74(2007).
[5] J LONG, E SHELHAMER, T DARRELL. Fully convolution networks for semantic segmentation, 3431-3440(2015).
[6] O RONNEBERGER, P FISCHER, T BROX. U-Net:Convolutional networks for biomedical image segmentation, 234-241(2015).
[7] Tao ZHOU, Yali DONG, Shan LIU et al. Cross-modality multi-encoder hybrid attention U-Net for lung tumors images segmentation. Acta Photonica Sinica, 51, 376-392(2022).
[8] Hong HUANG, LÜ Rongfei, Junli TAO et al. Segmentation of lung nodules in CT images using improved UNet++. Acta Photonica Sinica, 50, 73-83(2021).
[9] Ö ÇICEK, A ABDULKADIR, S S LIENKAMP et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation, 424-432(2016).
[10] J SUN, Y PENG, D LI et al. Segmentation of the multimodal brain tumor images used Res-U-Net, 263-273(2021).
[11] Feng XIA, Haijian SHAO, Xing DENG. Cross-stage deep-learning-based MRI fused images of human brain tumor segmentation. Journal of Image and Graphics, 27, 873-884(2022).
[12] R MCKINLEY, M REBSAMEN, K DÄTWYLER et al. Uncertainty-driven refinement of tumor-core segmentation using 3d-to-2d networks with label uncertainty, 401-411(2021).
[13] L PEI, A K MURAT, R COLEN. Multimodal brain tumor segmentation and survival prediction using a 3D self-ensemble ResUNet, 367-375(2021).
[14] Xiaoyu ZHANG, Bin WANG, Weichao AN et al. Glioma segmentation network based on 3DU-Net++ with fusion loss function. Computer Science, 48, 187-193(2021).
[15] W WANG, C CHEN, M DING et al. Transbts: multimodal brain tumor segmentation using transformer, 109-119(2021).
[16] Y XUE, T XU, H ZHANG et al. SegAN:adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinformatics, 382-392(2018).
[17] M HAMGHALAM, B LEI, T WANG. Brain tumor synthetic segmentation in 3D multimodal MRI scans, 153-162(2020).
[18] M D CIRILLO, D ABRAMIAN, A EKLUND. Vox2Vox: 3D-GAN for brain tumour segmentation, 274-284(2021).
[19] S NEMA, A DUDHANE, S MURALA et al. RescueNet: an unpaired GAN for brain tumor segmentation. Biomedical Signal Processing and Control, 55, 101641(2020).
[20] P ISOLA, J Y ZHU, T ZHOU et al. Image-to-image translation with conditional adversarial networks, 1125-1134(2017).
[21] J Y ZHU, T PARK, P ISOLA et al. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2223-2232(2017).
[22] Y DING, C ZHANG, M CAO et al. ToStaGAN: an end-to-end two-stage generative adversarial network for brain tumor segmentation. Neurocomputing, 462, 141-153(2021).
[23] H PEIRIS, Z CHEN, G EGAN et al. Reciprocal adversarial learning for brain tumor segmentation: a solution to BraTS challenge 2021 segmentation task, 171-181(2022).
[24] K HAN, Y WANG, Q TIAN et al. Ghostnet: more features from cheap operations, 1580-1589(2020).
[25] A G HOWARD, M ZHU, B CHEN et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv Preprint(2017).
Get Citation
Copy Citation Text
Muqing ZHANG, Yutong HAN, Bonian CHEN, Jianxin ZHANG. Magnetic Resonance Imaging Brain Tumor Segmentation Using Multiscale Ghost Generative Adversarial Network[J]. Acta Photonica Sinica, 2023, 52(8): 0817002
Category:
Received: Feb. 15, 2023
Accepted: Apr. 4, 2023
Published Online: Sep. 26, 2023
The Author Email: ZHANG Jianxin (jxzhang0411@163.com)