Chinese Journal of Quantum Electronics, Volume. 41, Issue 3, 421(2024)
Research status and prospect of laser‐induced breakdown spectroscopy for detection of carbon content in fly ash
[1] Suo X L, Sheng J G, Wang P H et al. CO2 emissions calculation and analysis of carbon emissions of coal-fired generating unit[J]. Power System Engineering, 34, 13-16(2018).
[2] Xu X M. Microwave On-line Detection Method and System Development for Carbon Content in Fly Ash[D](2023).
[3] Zhang G H, Hong B, Li Z X et al. Research progress and prospect of hazardous wastes incineration technology[J]. Hunan Nonferrous Metals, 39, 89-92(2023).
[4] Wei K, Xia H D, Lao S Q et al. Study on testing reliability of unburned carbon content in boiler fly ash with mass spectrometry quantitative analysis[J]. Boiler Technology, 51, 14-19(2020).
[5] Luo J, Wu L. Research status of soft measurement technology of typical thermal parameters for utility boilers[J]. Thermal Power Generation, 44, 1-9(2015).
[6] Chen Z Y, Tan H Z, Cheng S Y et al. Comparison of prediction models of carbon content of fly ash based on machine learning[J]. Thermal Power Generation, 52, 64-73(2023).
[7] Yan X, Li X F, Xiao G H et al. An online detection system for carbon content in fly ash based on burning method[J]. Industrial Control Computer, 34, 97-98(2021).
[9] Cheng Q M, Hu X Q, Wang Y F et al. Summary of measurement methods of carbon content in fly ash[J]. Journal of Shanghai University of Electric Power, 27, 519-524(2011).
[10] Xu H W. Research of Measuring Carbon Content in Flv Ash by Infrared Reflection Method[D](2010).
[11] Yang Z H, Xiang Z, Yang J K. Rapid determination of residual carbon in coal ash and slag by low energy X-ray scattering fluorescence method[J]. Coal Quality Technology, 44-46(2003).
[12] Yang Q, Yu Z Y, Ma W Z et al. Research progress of laser-induced breakdown spectroscopy in metal reliability evaluation[J]. Metallurgical Analysis, 43, 1-10(2023).
[13] Xu S X, Yu Z Y, Qin H Q et al. Research and application of rapid analysis of coal quality by laser-induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 38, 727-750(2021).
[14] Chen X X. Study on the Biomass Fuel Properties Based on Laser-induced Breakdown Spectroscopy[D](2020).
[15] Yu Z Y, Yao S C, Jiang Y et al. Comparison of the matrix effect in laser induced breakdown spectroscopy analysis of coal particle flow and coal pellets[J]. Journal of Analytical Atomic Spectrometry, 36, 2473-2479(2021).
[16] Chi F, Wang Q S, Li C J et al. Study on the measurement of coal as fired calorific value based on synchronous collection and fusion of LIBS and NIRS signals[J]. Thermal Power Generation, 52, 92-98(2023).
[17] Wang Y X, Yao M Y, Chen W J. Automatic peak detection of laser-induced breakdown spectroscopy using Gold deconvolution algorithm[J]. Chinese Journal of Quantum Electronics, 40, 816-826(2023).
[18] Fei Y, Sun Z M, Tian D P et al. Influence of fruit charcoal combustion on air composition based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 40, 436-446(2023).
[19] Gondal M A, Hussain T, Yamani Z H et al. The role of various binding materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy[J]. Talanta, 72, 642-649(2007).
[20] Ctvrtnickova T, Mateo M P, Yañez A et al. Characterization of coal fly ash components by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1093-1097(2009).
[21] Staňková A, Staňková A, Gilon N et al. A simple LIBS method for fast quantitative analysis of fly ashes[J]. Fuel, 89, 3468-3474(2010).
[22] Shen Y N, Yao S C, Pan G et al. Influence of binder on laser-induced breakdown spectroscopy measurement of unburned carbon in fly ash[J]. Chinese Journal of Lasers, 41, 0315003(2014).
[24] Yao S C, Lu J D, Pan S H et al. Analysis of unburned carbon in coal fly ash by using laser-induced breakdown spectroscopy in deep UV[J]. Chinese Journal of Lasers, 37, 1114-1117(2010).
[25] Yao S C, Lu J D, Xie C L et al. Impact of laser energy on measurement of fly ash carbon content[J]. Spectroscopy and Spectral Analysis, 29, 2025-2029(2009).
[26] Wang Z Z, Deguchi Y, Kuwahara M et al. Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 87, 130-138(2013).
[27] Xu J L. Study on Plasma Characteristics of Fly Ash Particle Flow and Measurement Method of Unburned Carbon Content[D](2018).
[28] Yao S C, Xu J L, Dong X et al. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 110, 146-150(2015).
[29] Bai K J, Tian H C, Yao S C et al. Influence of laser energy on measurement of unburned carbon in fly ash particle flow[J]. Spectroscopy and Spectral Analysis, 34, 1407-1411(2014).
[30] Shen Y L, Li X, Liu Y M et al. Study on plasma characteristics of fly ash in different gas environments[J]. Chinese Journal of Lasers, 41, 0515002(2014).
[31] Bian J T, Yin K J, Yao S C et al. Quantitative analysis of unburned carbon in fly ash by laser-induced breakdown spectroscopy in different atmosphere[J]. Laser & Optoelectronics Progress, 53, 043002(2016).
[32] Nan W G, Yoshihiro D, Wang H R et al. Reduction of CO2 effect on unburned carbon measurement in fly ash using LIBS[J]. Spectroscopy and Spectral Analysis, 38, 258-262(2018).
[33] Yu Z Y, Yao S C, Zhang L F et al. Surface-enhanced laser-induced breakdown spectroscopy utilizing metallic target for direct analysis of particle flow[J]. Journal of Analytical Atomic Spectrometry, 34, 172-179(2019).
[34] Yao S C, Yu Z Y, Xu S X et al. Repeatability improvement in laser induced plasma emission of particle flow by aberration-diminished focusing[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 175, 106014(2021).
[35] Chen H J, Dong M R, Cai J B et al. An optimization method based on spatial confinement for direct detection of laser-induced particle flow[J]. Journal of Analytical Atomic Spectrometry, 38, 1224-1231(2023).
[36] Yao S C, Xu J L, Zhang L F et al. Optimizing critical parameters for the directly measurement of particle flow with PF-SIBS[J]. Scientific Reports, 8, 1868(2018).
[37] Bai K J, Yao S C, Lu J D et al. Correction of C‐Fe line interference for the measurement of unburned carbon in fly ash by LIBS[J]. Journal of Analytical Atomic Spectrometry, 31, 2418-2426(2016).
[38] Zhang L F. Research on Optimization Method of Plasma Spectral Stability of Fly Ash Particle Flow[D](2020).
[39] Zorov N B, Gorbatenko A A, Labutin T A et al. A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 65, 642-657(2010).
[40] Yao S C, Lu J D, Zheng J P et al. Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method[J]. Journal of Analytical Atomic Spectrometry, 27, 473-478(2012).
[41] Li X W, Wang Z, Fu Y T et al. A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 99, 82-86(2014).
[42] Hou Z Y, Wang Z, Yuan T B et al. A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 31, 722-736(2016).
[43] Mohamed W T Y. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J]. Optics & Laser Technology, 40, 30-38(2008).
[44] Yao S C, Yin K J, Bian J T et al. Investigation into parameters optimization for reducing interference of plasma lines of fly ash[J]. Journal of South China University of Technology (Natural Science Edition), 44, 10-14(2016).
[45] Zou Y. Design of Laser-induced Breakdown Spectrometer and Its Application[D](2017).
[46] Yao S C. The Application of Laser Induced Breakdown Spectroscopy for Diagnosis of Power Station[D](2011).
[47] Yao S C, Shen Y L, Yin K J et al. Rapidly measuring unburned carbon in fly ash using molecular CN by laser-induced breakdown spectroscopy[J]. Energy & Fuels, 29, 1257-1263(2015).
[48] Ni M H, Li Y, Yi Z X et al. Application status of laser induced breakdown spectroscopy in coal quality detection[J]. Chinese Journal of Inorganic Analytical Chemistry, 12, 80-88(2022).
[49] Hu R M, Wang Z Z, Liu R W et al. Quantitative analysis of unburned carbon in fly ash by laser-induced breakdown spectroscopy[J]. Acta Photonica Sinica, 47, 39-46(2018).
[50] Ma W Z, Dong M R, Huang Y R et al. Quantitative analysis method of unburned carbon content of fly ash by laser-induced breakdown spectroscopy[J]. Infrared and Laser Engineering, 50, 201-210(2021).
[51] Liu R W, Chen P, Wang Z Z et al. Quantitative analysis of carbon content in fly ash using LIBS based on support vector regression[J]. Advanced Powder Technology, 32, 2978-2987(2021).
[52] Chen P, Qi C, Liu R W et al. Quantitative analysis of carbon content in fly ash using LIBS based on support vector machine regression[J]. Acta Optica Sinica, 42, 0930003(2022).
[53] Noda M, Deguchi Y, Iwasaki S et al. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 701-709(2002).
[54] Deguchi Y, Noda M, Fukuda Y et al. Industrial applications of temperature and species concentration monitoring using laser diagnostics[J]. Measurement Science and Technology, 13, R103-R115(2002).
[55] Kurihara M, Ikeda K, Izawa Y et al. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy[J]. Applied Optics, 42, 6159-6165(2003).
[56] Zhang L, Ma W G, Dong L et al. Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 65, 790-796(2011).
[57] Zhang L, Hu Z Y, Yin W B et al. Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash[J]. Frontiers of Physics, 7, 690-700(2012).
[59] Yao S C, Zhang L F, Zhu Y M et al. Evaluation of heavy metal element detection in municipal solid waste incineration fly ash based on LIBS sensor[J]. Waste Management, 102, 492-498(2020).
Get Citation
Copy Citation Text
Xianmao YANG, Ziyu YU, Weizhe MA, Huaiqing QIN, Qi YANG, Chengjun LI, Shuwen TAN, Sijie FENG, Shunchun YAO. Research status and prospect of laser‐induced breakdown spectroscopy for detection of carbon content in fly ash[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 421
Category: Special Issue on Key Technologies and Applications of LIBS
Received: Dec. 1, 2023
Accepted: --
Published Online: Jul. 17, 2024
The Author Email: YANG Xianmao (yangxm426@163.com)