Opto-Electronic Engineering, Volume. 51, Issue 5, 240034(2024)
Improved spatio-temporal graph convolutional networks for video anomaly detection
Fig. 1. Improved spatio-temporal graph convolutional network model framework
Fig. 2. Comparison between GCN module and CRF-GCN module. (a) GCN module; (b) CRF-GCN module
Fig. 4. Test results of UCSD Ped2 dataset. (a) Test003; (b) Test012
Fig. 5. Test results of ShanghaiTech dataset. (a) 04_0004; (b) 12_0173
Fig. 6. Test results of IITB-Corridor dataset. (a) Test000228; (b) Train000139 (Normal)
Fig. 7. Noised experiments. (a) AUC loss for training with noise-added data; (b) ACC loss for training with noise-added
|
|
|
|
|
|
Get Citation
Copy Citation Text
Hongmin Zhang, Dingding Yan, Qianqian Tian. Improved spatio-temporal graph convolutional networks for video anomaly detection[J]. Opto-Electronic Engineering, 2024, 51(5): 240034
Category: Article
Received: Feb. 1, 2024
Accepted: Apr. 10, 2024
Published Online: Jul. 31, 2024
The Author Email: Zhang Hongmin (张红民)