Journal of Synthetic Crystals, Volume. 49, Issue 2, 358(2020)
Research Progress on Preparation of Compound Thin Films by Vapor Transport Deposition
[1] [1] Frerichs R. The photo-conductivity of “Incomplete Phosphors”[J].Physical Review,1947,72 (7):594-601.
Frerichs R. The photo-conductivity of “Incomplete Phosphors”[J].Physical Review,1947,72 (7):594-601.
[2] [2] Perrier G,Philippe R,Dodelet J P. Growth of semiconductors by the close-spaced vapor transport technique: a review[J].Journal of Materials Research,1988,3(5):1031-1042.
Perrier G,Philippe R,Dodelet J P. Growth of semiconductors by the close-spaced vapor transport technique: a review[J].Journal of Materials Research,1988,3(5):1031-1042.
[3] [3] https://www.nrel.gov/pv/cell-efficiency.html
https://www.nrel.gov/pv/cell-efficiency.html
[4] [4] Cano-Torre J M,Caballero R. Victorov I,et al. Raman characterization and modelling of Cu2ZnSn1-xGexS4 single crystals grown using chemical vapor transport[J].Optical Materials,2017,66: 671-677.
Cano-Torre J M,Caballero R. Victorov I,et al. Raman characterization and modelling of Cu2ZnSn1-xGexS4 single crystals grown using chemical vapor transport[J].Optical Materials,2017,66: 671-677.
[5] [5] Tassoult H,Bouloufa A,Pawlowski M,et al. Structural and photoluminescent properties of CuGaxIn1-xSe2 thin films prepared by close-spaced vapor transport technique[J].Materials Science in Semiconductor Processing,2018,88: 167-172.
Tassoult H,Bouloufa A,Pawlowski M,et al. Structural and photoluminescent properties of CuGaxIn1-xSe2 thin films prepared by close-spaced vapor transport technique[J].Materials Science in Semiconductor Processing,2018,88: 167-172.
[6] [6] Sagna A,Djessas K,Sene C,et al. Close spaced vapor transport deposition of Cu2ZnSnS4 thin gilms:effect of iodine pressure[J].Journal of Alloys and Compounds,2016,685: 699-704.
Sagna A,Djessas K,Sene C,et al. Close spaced vapor transport deposition of Cu2ZnSnS4 thin gilms:effect of iodine pressure[J].Journal of Alloys and Compounds,2016,685: 699-704.
[8] [8] Becker F,Frenck H-J,CdTe thin-film modules: basic developments,optimizing performance and considerations in design[J].Photovoltaics International,2011,12:146-148.
Becker F,Frenck H-J,CdTe thin-film modules: basic developments,optimizing performance and considerations in design[J].Photovoltaics International,2011,12:146-148.
[10] [10] Wen X X,Chen C,Lu S C,et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency[J].Nature Communications,2018,9(1):2179.
Wen X X,Chen C,Lu S C,et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency[J].Nature Communications,2018,9(1):2179.
[11] [11] Wang Q,Liu F Y,Wang L,et al. Towards fast and low cost Sb2S3 anode preparation: a simple vapor transport deposition process by directly using antimony sulfide ore as raw material[J].Scripta Materialia,2019,173:75-79.
Wang Q,Liu F Y,Wang L,et al. Towards fast and low cost Sb2S3 anode preparation: a simple vapor transport deposition process by directly using antimony sulfide ore as raw material[J].Scripta Materialia,2019,173:75-79.
[12] [12] Lu S C,Zhao Y,Wen X,et al. Sb2(Se1-xSx)3 thin-film solar cells fabricated by single-source vapor transport deposition[J].Solar RRL,2019,3 (4):1800280.
Lu S C,Zhao Y,Wen X,et al. Sb2(Se1-xSx)3 thin-film solar cells fabricated by single-source vapor transport deposition[J].Solar RRL,2019,3 (4):1800280.
[13] [13] Wangperawong A,Herron S M,Runser R R,et al. Vapor transport deposition and epitaxy of orthorhombic sns on glass and nacl substrates[J].Applied Physics Letters,2013,103(5):052105.
Wangperawong A,Herron S M,Runser R R,et al. Vapor transport deposition and epitaxy of orthorhombic sns on glass and nacl substrates[J].Applied Physics Letters,2013,103(5):052105.
[14] [14] Wangperawong A,Hsu P-C,Yee Y H,et al. Bifacial solar cell with sns absorber by vapor transport deposition [J].Applied Physics Letters,2014,105(17):173904.
Wangperawong A,Hsu P-C,Yee Y H,et al. Bifacial solar cell with sns absorber by vapor transport deposition [J].Applied Physics Letters,2014,105(17):173904.
[15] [15] Lim D H,Suh H Y,Suryawanshi M,et al. Kinetically controlled growth of phase-pure sns absorbers for thin film solar cells: achieving efficiency near 3% with long-term stability using An SnS/CdS heterojunction[J].Advanced Energy Materials,2018,8(10):1702605.
Lim D H,Suh H Y,Suryawanshi M,et al. Kinetically controlled growth of phase-pure sns absorbers for thin film solar cells: achieving efficiency near 3% with long-term stability using An SnS/CdS heterojunction[J].Advanced Energy Materials,2018,8(10):1702605.
[16] [16] Steinmann V,Jaramillo R,Katy H,et al. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation[J].Advanced Materials,2014,26(44):7488.
Steinmann V,Jaramillo R,Katy H,et al. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation[J].Advanced Materials,2014,26(44):7488.
[17] [17] Li Y Y,Wang G,Zhu X G,et al. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit[J].Advanced Materials,2010,22(36):4002-4007.
Li Y Y,Wang G,Zhu X G,et al. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit[J].Advanced Materials,2010,22(36):4002-4007.
[19] [19] Li H D, Gao L,Li H,et al. Growth and band alignment of Bi2Se3 topological insulator on H-terminated Si (111) Van Der Waals surface[J].Applied Physics Letters,2013,102(7):074106.
Li H D, Gao L,Li H,et al. Growth and band alignment of Bi2Se3 topological insulator on H-terminated Si (111) Van Der Waals surface[J].Applied Physics Letters,2013,102(7):074106.
[20] [20] Suda T,Nishimoto T,Kurita S. Zinc phosphide thin gilms grown by low pressure vapor phase deposition [J].Journal of Crystal Growth,1988,86(1-4):430-435.
Suda T,Nishimoto T,Kurita S. Zinc phosphide thin gilms grown by low pressure vapor phase deposition [J].Journal of Crystal Growth,1988,86(1-4):430-435.
[22] [22] Chen C Y,Lin H Y,Chiang K M,et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%[J].Advanced Materials,2017,29(12):1605290.
Chen C Y,Lin H Y,Chiang K M,et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%[J].Advanced Materials,2017,29(12):1605290.
[23] [23] Ma Q S,Huang S J,Wen X M,et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation[J].Advanced Energy Materials,2016,6(7):1502202.
Ma Q S,Huang S J,Wen X M,et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation[J].Advanced Energy Materials,2016,6(7):1502202.
[24] [24] Shi Z F,Li X J,Li Y,et al. Hole-injection layer-free perovskite light-emitting diodes[J].ACS Appl. Mater. Interfaces,2018,38(10):32289- 32297.
Shi Z F,Li X J,Li Y,et al. Hole-injection layer-free perovskite light-emitting diodes[J].ACS Appl. Mater. Interfaces,2018,38(10):32289- 32297.
Get Citation
Copy Citation Text
JIN Baotang, ZHONG Min, YUAN Wenbin, ZHANG Yufeng. Research Progress on Preparation of Compound Thin Films by Vapor Transport Deposition[J]. Journal of Synthetic Crystals, 2020, 49(2): 358
Category:
Received: --
Accepted: --
Published Online: Jun. 15, 2020
The Author Email: Min ZHONG (zhongmin@bhu.edu.cn)
CSTR:32186.14.