Laser & Optoelectronics Progress, Volume. 60, Issue 16, 1612001(2023)

Wear Detection Method for Flexible Polishing Bonnet Tools Based on Improved Iterative Closest Point Splicing Algorithm

Minhui Zheng, Zhenzhong Wang*, Xuepeng Huang, and Lucheng Li
Author Affiliations
  • School of Aerospace Engineering, Xiamen University, Xiamen 361102, Fujian, China
  • show less
    Figures & Tables(24)
    Schematic of data acquisition platform detection. (a) Three-axis motion platform; (b) schematic of bonnet polishing precession; (c) R40 bonnet tool; (d) KEYENCE LJ-X8200 large range line laser sensor;(e)SmartRay ECCO95.020 small range line laser sensor;(f)R160 bonnet tool
    R40 bonnet tool dataset
    Data preprocessing effect
    Three frames of adjacent point clouds
    Specific process of the algorithm
    Flow chart of bonnet wear detection algorithm
    Registration effect of R40 bonnet tool. (a) PFH-ICP registration algorithm; (b) FPFH-ICP registration algorithm; (c) 3DSC-ICP registration algorithm; (d) NDT-ICP registration algorithm; (e) proposed crude registration -ICP; (f) proposed algorithm
    Registration effect of R160 bonnet tool. (a) PFH-ICP registration algorithm; (b) FPFH-ICP registration algorithm; (c) 3DSC-ICP registration algorithm; (d) NDT-ICP registration algorithm; (e) proposed crude registration-ICP; (f) proposed algorithm
    Bonnet tool point cloud obtained by one-time full scanning
    Contour plot in Y direction obtained by the large range line laser sensor
    Contour plot in X direction obtained by the large range line laser sensor
    Contour plot in Y direction obtained by the proposed algorithm
    Contour plot in X direction obtained by the proposed algorithm
    • Table 1. Motion parameters of three-axis platform

      View table

      Table 1. Motion parameters of three-axis platform

      Platform motion axisParameterPrecision
      X axisMaximum stroke is 430 mmSingle-axis repeatable positioning accuracy is ±0.5 μm
      Y axisMaximum stroke is 430 mmSingle-axis repeatable positioning accuracy is ±0.5 μm
      Z axisMaximum stroke is 200 mmSingle-axis repeatable positioning accuracy is ±0.5 μm
    • Table 2. Parameters of KEYENCE LJ-X8200 large range line laser sensor

      View table

      Table 2. Parameters of KEYENCE LJ-X8200 large range line laser sensor

      Base distance(best test distance)/mmZ-axis measurement range(height)/mmX-axis measurement range(width)/mmX-axis repeatability(width)/μmZ -axis repeatability(height)/μm
      245211-27964-8031
    • Table 3. Parameters of SmartRay ECCO95.020 small range line laser sensor

      View table

      Table 3. Parameters of SmartRay ECCO95.020 small range line laser sensor

      Base distance(best test distance)/mmZ-axis measurement range(height)/mmX-axis measurement range(width)/mmX-axis repeatability(width)/μmZ -axis repeatability(height)/μm
      6050-7022-280.20.2
    • Table 4. Data preprocessing result

      View table

      Table 4. Data preprocessing result

      Point cloud dataNumber of original point cloudsNumber of point clouds after preprocessingPoint cloud count reduction /%
      11338814596099.6
      22393770285099.9
      32402175282599.9
      42349507283399.8
    • Table 5. Average rotation error of two registrations for R40 bonnet tool

      View table

      Table 5. Average rotation error of two registrations for R40 bonnet tool

      AlgorithmXYZ
      PFH-ICP0.12920.0092-0.7553
      FPFH-ICP0.08520.0174-0.7694
      3DSC-ICP0.11450.0088-0.7789
      NDT-ICP0.18510.2904-0.7503
      Proposed crude registration algorithm-ICP0.000030.0005-0.7485
      Proposed algorithm0.000020.0004-0.7358
    • Table 6. Average rotation error of two registrations for R160 bonnet tool

      View table

      Table 6. Average rotation error of two registrations for R160 bonnet tool

      AlgorithmXYZ
      PFH-ICP0.06130.3383-0.7677
      FPFH-ICP0.04130.3626-0.7664
      3DSC-ICP0.11420.0498-0.7735
      NDT-ICP0.35740.2896-0.7803
      Proposed crude registration algorithm-ICP0.00070.0008-0.7448
      Proposed algorithm0.00050.0004-0.7248
    • Table 7. Average translation error of two registrations for R40 bonnet tool

      View table

      Table 7. Average translation error of two registrations for R40 bonnet tool

      AlgorithmXYZ
      PFH-ICP0.0016-0.2978-0.1985
      FPFH-ICP0.0015-0.2985-0.1998
      3DSC-ICP0.0018-0.2997-0.1993
      NDT-ICP0.0153-0.2982-0.1956
      Proposed crude registration algorithm-ICP0.0006-0.2968-0.1945
      Proposed algorithm0.0005-0.2950-0.1931
    • Table 8. Average translation error of two registrations for R160 bonnet tool

      View table

      Table 8. Average translation error of two registrations for R160 bonnet tool

      AlgorithmXYZ
      PFH-ICP0.0023-0.2949-0.1963
      FPFH-ICP0.0092-0.2975-0.1988
      3DSC-ICP0.0018-0.2999-0.1994
      NDT-ICP0.0065-0.2942-0.1985
      Proposed crude registration algorithm-ICP0.0006-0.2935-0.1931
      Proposed algorithm0.0004-0.2915-0.1911
    • Table 9. Average registration completion time of two registrations for R40 bonnet tool

      View table

      Table 9. Average registration completion time of two registrations for R40 bonnet tool

      AlgorithmCoarse registrationPrecise registrationTotal time
      PFH-ICP18.1371.04419.181
      FPFH-ICP9.2941.00710.301
      3DSC-ICP2.18710.66312.849
      NDT-ICP1.37921.53922.918
      Proposed crude registration algorithm-ICP0.2481.8052.053
      Proposed algorithm0.2480.9311.179
    • Table 10. Average registration completion time of two registrations for R160 bonnet tool

      View table

      Table 10. Average registration completion time of two registrations for R160 bonnet tool

      AlgorithmCoarse registrationPrecise registrationTotal time
      PFH-ICP327.3306.804334.134
      FPFH-ICP210.7037.345218.048
      3DSC-ICP46.185461.184507.369
      NDT-ICP6.34544.38750.732
      Proposed crude registration algorithm-ICP1.15314.69215.845
      Proposed algorithm1.1537.8458.998
    • Table 11. Wear depth of R40 bonnet tool

      View table

      Table 11. Wear depth of R40 bonnet tool

      MethodZ_x¯Z_y¯Z_x¯+Z_y¯)/2
      Wear depth error0.00170.0150.0067
      One-time full scanning0.23090.33720.2841
      Proposed algorithm0.23260.32220.2774
    Tools

    Get Citation

    Copy Citation Text

    Minhui Zheng, Zhenzhong Wang, Xuepeng Huang, Lucheng Li. Wear Detection Method for Flexible Polishing Bonnet Tools Based on Improved Iterative Closest Point Splicing Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1612001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Sep. 5, 2022

    Accepted: Oct. 17, 2022

    Published Online: Aug. 18, 2023

    The Author Email: Wang Zhenzhong (wangzhenzhong@xmu.edu.cn)

    DOI:10.3788/LOP222456

    Topics