Matter and Radiation at Extremes, Volume. 6, Issue 4, 044401(2021)

Investigation of magnetic inhibition effect on ion acceleration at high laser intensities

H. Huang*... Z. M. Zhang, B. Zhang, W. Hong, S. K. He, L. B. Meng, W. Qi, B. Cui and W. M. Zhou |Show fewer author(s)
Author Affiliations
  • Science and Technology on Plasma Physics Laboratory, Mianyang 621900, China
  • show less
    References(38)

    [1] M.Nishikino, K.Sato, A.Yogo et al. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett., 94, 181502(2009).

    [2] M.Baumann, E.Beyreuther, K.Zeil et al. Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses. Appl. Phys. B, 110, 437-444(2013).

    [3] J. D.Bonlie, H.Chen, S. C.Wilks et al. Making relativistic positrons using ultraintense short pulse laser. Phys. Plasmas, 16, 122702(2009).

    [4] I.Alber, V.Bagnoud, M.Roth et al. Proton acceleration experiments and warm dense matter research using high power lasers. Plasma Phys. Controlled Fusion, 51, 124039(2009).

    [5] T. E.Cowan, M. H.Key, M.Roth et al. Fast ignition by intense laser-acceleated proton beams. Phys. Rev. Lett., 86, 436-439(2001).

    [6] B. J.ALbright, J. C.Fernández, J. J.Honrubia et al. Progress and prospects of ion-driven fast ignition. Nucl. Fusion, 49, 065004(2009).

    [7] B. J.ALbright, F. N.Beg, J. C.Fernández et al. Fast ignition with laser-driven proton and ion beams. Nucl. Fusion, 54, 054006(2014).

    [8] M.Borghesi, A.Macchi, M.Passoni. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751-793(2013).

    [9] M.Borghesi, B.Qiao, M.Zepf et al. Stable GeV ion-beam acceleration from thin foils by circularly polorized laser pulse. Phys. Rev. Lett., 102, 145002(2009).

    [10] A.Pukhov, G.Shvets, T.-P.Yu et al. Stable laser-driven proton beam acceleration from a two-ion species ultra thin foil. Phys. Rev. Lett., 105, 065002(2010).

    [11] T. E.Cowan, A. B.Langdon, S. C.Wilks et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasma, 8, 542(2001).

    [12] B. J.Albright, J.Cobble, B. M.Hegelich et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature, 439, 441-444(2006).

    [13] C.Brabetz, O.Deppert, F.Wagner et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002(2016).

    [14] R. J.Gray, A.Higginson, M.King et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun., 9, 724(2018).

    [15] A.Korzhimanov, M.Nakatsutsumi, Y.Sentoku et al. Self-generated surface magnetic fields inhibit laserdriven sheath acceleration of high-energy protons. Nat. Commun., 9, 280(2018).

    [16] S.Buffechoux, A.Kon, M.Nakatsutsumi et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314-2316(2010).

    [17] C.McGuffey, N.Nakanii, W.Schumaker et al. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions. Phys. Rev. Lett., 110, 015003(2013).

    [18] B.Albertazzi, P.Antici, S. N.Chen et al. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation. Phys. Plasma, 22, 123108(2015).

    [19] X. T.He, Z. M.Sheng, Z. M.Zhang et al. Hundreds MeV monoenergetic proton bunch from interaction of 1020−21 W/cm2 circularly polarized laser pulse with tailored complex target. Appl. Phys. Lett., 100, 134103(2012).

    [20] P.Mora. Plasma expansion into a vacuum. Phys. Rev. Lett., 90, 185002(2003).

    [21] P.Antici, E.d’Humières, J.Fuchs et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys., 2, 48-54(2006).

    [22] M. G.Haines. Saturation mechanisms for the generated magnetic field in nonuniform laser-matter irradiation. Phys. Rev. Lett., 78, 254-257(1997).

    [23] S. V.Bulanov, F.Califano, F.Pegoraro. Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas. Phys. Rev. E, 56, 963-969(1997).

    [24] P.Antici, L.Gremillet, T.Grismayer et al. Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets. Phys. Plasma, 20, 123116-1-123116-8(2013).

    [25] M.Lontano, M.Passoni. One-dimensional model of the electrostatic ion acceleration in the ultraintense laser–solid interaction. Laser Particle Beams, 22, 163-169(2004).

    [26] M.Lontano, M.Passoni. Theory of light-ion acceleration driven by a strong charge separation. Phys. Rev. Lett., 101, 115001(2008).

    [27] L.Bertagna, M.Passoni, A.Zani. Energetic ions from next generation ultraintense ultrashort lasers: Scaling laws for target normal sheath acceleration. Nucl. Instrum. Methods Phys. Res., Sect. A, 620, 46-50(2010).

    [28] P.Mora, R.Pellat. Self-similar expansion of a plasma into a vacuum. Phys. Flusids, 22, 2300(1979).

    [29] J. E.Allen, P. L.Auer, J. E.Crow. Expansion of a plasma into a vacuum. J. Plasma Phys., 14, 65-76(1975).

    [31] E.d’Humières, A.Debayle, J. J.Honrubia et al. Divergence of laser-driven relativistic electron beams. Phys. Rev. E, 82, 036405(2010).

    [32] M.Mcmahon, V.Ovchinnikov, D. W.Schumacher et al. Effects of preplasma scale length and laser intensity on the divergence of laser generated hot electrons. Phys. Rev. Lett., 110, 065007(2013).

    [33] A.Bigongiari, M.Borghesi, S.Kar et al. Laser-driven proton acceleration: Source optimization and radiographic applications. Plasma Phys. Controlled Fusion, 50, 124040(2008).

    [34] M.Borghesi, S. V.Bulanov, J.Fuchs et al. Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol., 49, 412-439(2006).

    [35] W. L.Kruer, M.Tabak, S. C.Wilks et al. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383-1386(1992).

    [36] Z.Guo, J. Y.Wang, L. H.Yu et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: Sapphire chirped pulse amplification laser system. Opt. Express, 26, 026776(2018).

    [37] C.Jeon, J.Shin, J. W.Yoon et al. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express, 27, 020412(2019).

    [38] X. M.Zeng, K. N.Zhou, Y. L.Zuo et al. Multi-petawatt laser facility fully based on optical parametric chriped pulse amplification. Opt. Lett., 42, 2014(2017).

    Tools

    Get Citation

    Copy Citation Text

    H. Huang, Z. M. Zhang, B. Zhang, W. Hong, S. K. He, L. B. Meng, W. Qi, B. Cui, W. M. Zhou. Investigation of magnetic inhibition effect on ion acceleration at high laser intensities[J]. Matter and Radiation at Extremes, 2021, 6(4): 044401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fundamental Physics At Extreme Light

    Received: Sep. 10, 2020

    Accepted: Apr. 12, 2021

    Published Online: Jul. 28, 2021

    The Author Email:

    DOI:10.1063/5.0029163

    Topics