Acta Optica Sinica, Volume. 43, Issue 12, 1228008(2023)

Target Classification of Hyperspectral Lidar Based on Optimization Selection of Spatial-Spectral Features

Bowen Chen1,2,3, Shuo Shi2,3,4、*, Wei Gong2,3,4, Qian Xu2, Xingtao Tang2, Sifu Bi2, and Biwu Chen5
Author Affiliations
  • 1Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, Hubei, China
  • 2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, Hubei, China
  • 3Electronic Information School, Wuhan University, Wuhan 430079, Hubei, China
  • 4Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, Hubei, China
  • 5Shanghai Radio Equipment Research Institute, Shanghai 201109, China
  • show less
    References(54)

    [1] Yan W Y, Shaker A, El-Ashmawy N. Urban land cover classification using airborne LiDAR data: a review[J]. Remote Sensing of Environment, 158, 295-310(2015).

    [2] Wulder M A, White J C, Nelson R F et al. Lidar sampling for large-area forest characterization: a review[J]. Remote Sensing of Environment, 121, 196-209(2012).

    [3] Chen Y W, Jiang C H, Hyyppä J et al. Feasibility study of ore classification using active hyperspectral LiDAR[J]. IEEE Geoscience and Remote Sensing Letters, 15, 1785-1789(2018).

    [4] Sun S H, Salvaggio C. Aerial 3D building detection and modeling from airborne LiDAR point clouds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 1440-1449(2013).

    [5] Chen B W, Shi S, Gong W et al. Multispectral LiDAR point cloud classification: a two-step approach[J]. Remote Sensing, 9, 373(2017).

    [6] Shi S, Song S L, Gong W et al. Improving backscatter intensity calibration for multispectral LiDAR[J]. IEEE Geoscience and Remote Sensing Letters, 12, 1421-1425(2015).

    [7] Gong W, Shi S, Chen B W et al. Development and application of airborne hyperspectral LiDAR imaging technology[J]. Acta Optica Sinica, 42, 1200002(2022).

    [8] Gong W, Shi S, Chen B W et al. Development and prospect of hyperspectral LiDAR for earth observation[J]. National Remote Sensing Bulletin, 25, 501-513(2021).

    [9] Lu J, Chen J Y, Li W et al. Research on classification of pest and disease tree samples based on hyperspectral lidar[J]. Laser&Optoelectronics Progress, 58, 1628004(2021).

    [10] Sun H B, Wang Z, Chen Y W et al. Preliminary verification of hyperspectral LiDAR covering VIS-NIR-SWIR used for objects classification[J]. European Journal of Remote Sensing, 55, 291-303(2022).

    [11] Vauhkonen J, Hakala T, Suomalainen J et al. Classification of spruce and pine trees using active hyperspectral LiDAR[J]. IEEE Geoscience and Remote Sensing Letters, 10, 1138-1141(2013).

    [12] Hakala T, Suomalainen J, Kaasalainen S et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning[J]. Optics Express, 20, 7119-7127(2012).

    [13] Shao H, Chen Y W, Yang Z R et al. A 91-channel hyperspectral LiDAR for coal/rock classification[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1052-1056(2020).

    [14] Thomas H, Goulette F, Deschaud J E et al. Semantic classification of 3D point clouds with multiscale spherical neighborhoods[C], 390-398(2018).

    [15] Shi S, Bi S F, Gong W et al. Land cover classification with multispectral LiDAR based on multi-scale spatial and spectral feature selection[J]. Remote Sensing, 13, 4118(2021).

    [16] Huo L Z, Silva C A, Klauberg C et al. Supervised spatial classification of multispectral LiDAR data in urban areas[J]. PLoS One, 13, e0206185(2018).

    [17] Chen B W, Shi S, Sun J et al. Using HSI color space to improve the multispectral lidar classification error caused by measurement geometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 3567-3579(2021).

    [18] Weinmann M, Jutzi B, Hinz S et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 286-304(2015).

    [19] Gu S T, Wang L, Ma Y X et al. Local feature description of LiDAR point cloud data based on hierarchical Mercator projection[J]. Acta Optica Sinica, 40, 2015001(2020).

    [20] Chehata N, Guo L, Mallet C. Airborne lidar feature selection for urban classification using random forests[J]. International Archives of Photogrammetry and Remote Sensing, XXXVIII, 207-212(2009).

    [21] Liao W Z, Bellens R, Pižurica A et al. Combining feature fusion and decision fusion for classification of hyperspectral and LiDAR data[C], 1241-1244(2014).

    [22] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 55, 95-107(1996).

    [23] Sader S A, Waide R B, Lawrence W T et al. Tropical forest biomass and successional age class relationships to a vegetation index derived from landsat TM data[J]. Remote Sensing of Environment, 28, 143-198(1989).

    [24] Hede A N H, Kashiwaya K, Koike K et al. A new vegetation index for detecting vegetation anomalies due to mineral deposits with application to a tropical forest area[J]. Remote Sensing of Environment, 171, 83-97(2015).

    [25] Xue J, Su B. Significant remote sensing vegetation indices: a review of developments and applications[J]. Journal of Sensors, 1-17(2017).

    [26] Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass[J]. Remote Sensing of Environment, 27, 119-127(1989).

    [27] Jiang Z Y, Huete A R, Didan K et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment, 112, 3833-3845(2008).

    [28] Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 25, 295-309(1988).

    [29] Defries R S, Townshend J R G. NDVI-derived land cover classifications at a global scale[J]. International Journal of Remote Sensing, 15, 3567-3586(1994).

    [30] Moges S M, Raun W R, Mullen R W et al. Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield[J]. Journal of Plant Nutrition, 27, 1431-1441(2005).

    [31] Steele M R, Gitelson A A, Rundquist D C. A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves[J]. Agronomy Journal, 100, 779-782(2008).

    [32] C S T Ⅲ Daughtry, Walthall C, Kim M et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 74, 229-239(2000).

    [33] Merzlyak M N, Gitelson A A, Chivkunova O B et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia Plantarum, 106, 135-141(1999).

    [34] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 76, 156-172(2001).

    [35] Zhang Z, Qie G F, Wang C et al. Relationship between forest color characteristics and scenic beauty: case study analyzing pictures of mountainous forests at sloped positions in Jiuzhai valley, China[J]. Forests, 8, 63(2017).

    [36] Hu C M. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 113, 2118-2129(2009).

    [37] Chen B W, Shi S, Gong W et al. True-color three-dimensional imaging and target classification based on hyperspectral LiDAR[J]. Remote Sensing, 11, 1541(2019).

    [38] Woebbecke D M, Meyer G E, von Bargen K et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 38, 259-269(1995).

    [39] Hunt E R,, Cavigelli M, Daughtry C S T et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J]. Precision Agriculture, 6, 359-378(2005).

    [40] Bassine F Z, Errami A, Khaldoun M. Vegetation recognition based on UAV image color index[C](2019).

    [41] Meyer G E, Hindman T W, Laksmi K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE, 3543, 327-335(1999).

    [42] Meyer G E, Neto J C, Jones D D et al. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images[J]. Computers and Electronics in Agriculture, 42, 161-180(2004).

    [43] Gitelson A A, Kaufman Y J, Stark R et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 80, 76-87(2002).

    [44] Louhaichi M, Borman M M, Johnson D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat[J]. Geocarto International, 16, 65-70(2001).

    [45] Bendig J, Yu K, Aasen H et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 39, 79-87(2015).

    [46] Kawashima S, Nakatani M. An algorithm for estimating chlorophyll content in leaves using a video camera[J]. Annals of Botany, 81, 49-54(1998).

    [47] Wang Y, Wang D, Zhang G et al. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method[J]. Field Crops Research, 149, 33-39(2013).

    [48] Li B, Cheng Z Q, Dang G et al. Survey on normal estimation for 3 D point clouds[J]. Computer Engineering and Applications, 46, 1-7(2010).

    [49] Hoppe H, DeRose T, Duchamp T et al. Surface reconstruction from unorganized points[C], 71-78(1992).

    [50] Faramarzi A, Heidarinejad M, Mirjalili S et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems With Applications, 152, 113377(2020).

    [51] Ridha H M. Parameters extraction of single and double diodes photovoltaic models using Marine Predators Algorithm and Lambert W function[J]. Solar Energy, 209, 674-693(2020).

    [52] Shaheen M A M, Yousri D, Fathy A et al. A novel application of improved marine predators algorithm and particle swarm optimization for solving the ORPD problem[J]. Energies, 13, 5679(2020).

    [53] Breiman L. Random forests[J]. Machine Learning, 45, 5-32(2001).

    [54] Delgado M F, Cernadas E, Barro S et al. Do we need hundreds of classifiers to solve real world classification problems?[J]. Journal of Machine Learning Research, 15, 3133-3181(2014).

    Tools

    Get Citation

    Copy Citation Text

    Bowen Chen, Shuo Shi, Wei Gong, Qian Xu, Xingtao Tang, Sifu Bi, Biwu Chen. Target Classification of Hyperspectral Lidar Based on Optimization Selection of Spatial-Spectral Features[J]. Acta Optica Sinica, 2023, 43(12): 1228008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 19, 2022

    Accepted: Nov. 29, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Shi Shuo (shishuo@whu.edu.cn)

    DOI:10.3788/AOS221717

    Topics