Acta Physica Sinica, Volume. 69, Issue 15, 154207-1(2020)
Fig. 1. Typical examples of flatband lattices: (a) Quasi-one-dimensional (1D) rhombic lattice; (b) Lieb lattice; (c) Kagome lattice; (d) super-honeycomb lattice (sHCL). Compact localized states (CLSs) are depicted as colored sites, where zero amplitudes are denoted by gray color, and those with non-zero amplitudes of opposite phase are denoted by red and blue colors.
Fig. 2. Examples of photonic flatband structures: (a) Kagome lattice for terahertz spoof plasmons, displaying an omnidirectional minimum in the transmission at the flatband frequency (dashed line) in the right panel[48]; (b) experimental setup exposing the zero-refractive-index all-dielectric metamaterials with a square lattice to realize cloaking inside a channel with the Dirac point, and the right panel shows corresponding three-dimensional dispersion diagrams consisting of a Dirac cone and a flatband[50]; (c) structured microcavity forming a 1D stub lattice and its photoluminescence spectrum, revealing a flatband in the middle[51].
Fig. 3. Examples of femtosecond laser-writing flatband photonic lattices: (a) A photonic Lieb lattice for demonstration of flatband compact localized states[64,65]; (b) a photonic Kagome lattice established for demonstration of topological corner states[66]; (c) a driven photonic rhombic lattice for experimental observation of Aharonov-Bohm cages[67,68].
Fig. 4. Examples of photonic lattices created by multiple-beam optical induction method[80,83]. Top panel shows schematic of experimental setup. PBS, polarized beam splitter; SBN, strontium barium niobite. Bottom panel shows typical examples of photonic lattices realized in experiment: (a) A “perfect” honeycomb lattice; (b) an inversion-symmetry-breaking honeycomb lattice; (c) a vortex lattice; (d) a Kagome lattice.
Fig. 5. Examples of photonic lattices created by direct cw-laser-writing technique in a nonlinear bulk crystal. Top panel shows illustration of experimental setup. SLM, spatial light modulator; BS, beam splitter; FM, Fourier mask. Bottom panel shows typical examples of photonic lattices created by direct cw-laser-writing method: (a) A photonic Lieb lattice with “bearded” edges[89]; (b) a photonic Kagome lattice with flat boundary[90]; (c) a photonic sHCL[91]; (d) a driven photonic rhombic lattice with refractive index gradient parallel to the ribbon[92].
Fig. 6. Experimental results of CLSs in flatband lattices: (a) Linear image (formed by CLSs) propagation through an optically induced Lieb photonic lattice[85]; (b) a bound-state transmission in a Kagome photonic lattice[104]; (c) observation of a quincunx-shaped (
Fig. 7. Demonstration of unconventional line state in photonic Lieb and super-honeycomb lattices[89,91]: (a), (d) Schematic of flatband line states in infinite lattices, and insect in (d) shows the band structure of sHCL; (b1), (e1) out-of-phase input line beam; (b2), (e2) out-of-phase output without the lattice; (b3), (e3) out-of-phase output through the lattice; (b4), (e4) simulation results showing the out-of-phase line beam remains intact but the in-phase line deteriorates after propagating a long distance through the lattice; (b5) measured
Fig. 8. (a) Illustration of the noncontractible loop states (NLSs) in an infinitely extended Kagome lattice; (b) a torus showing two NLSs mimicking the 2D infinite lattice; (c) two robust boundary modes (RBMs) in a Kagome lattice with flat cutting edges, where black sites are of zero-amplitude, while blue and red ones distinguish non-zero sites with opposite phase; (d) schematic diagram of the Corbino-shaped Kagome lattice, where the NLS is illustrated by the orange circle; (e) from left to right (e1), (e3) experimental results of RBM1 and RBM2 under out-of-phase condition; (e2), (e4) simulation result corresponding to (e1) and (e3); (f1) experimentally established finite-sized Kagome lattice in a Corbino-geometry; (f2)-(f4) the NLS observed in (f2) experiment and (f3) simulations after propagation to 10 mm and (f4) 40 mm under out-of-phase condition. All insets are from input ring necklace of the probe beam. In-phase excitation destroys all localized states[90].
Get Citation
Copy Citation Text
Shi-Qiang Xia, Li-Qin Tang, Shi-Qi Xia, Ji-Na Ma, Wen-Chao Yan, Dao-Hong Song, Yi Hu, Jing-Jun Xu, Zhi-Gang Chen.
Received: Mar. 14, 2020
Accepted: --
Published Online: Dec. 30, 2020
The Author Email: Xu Jing-Jun (jjxu@nankai.edu.cn), Chen Zhi-Gang (zgchen@nankai.edu.cn)