Laser & Optoelectronics Progress, Volume. 60, Issue 3, 0312015(2023)

In-Situ Testing Techniques for Mechanical Properties of Materials: Development and Applications

Wenjuan Xing1, Zhonghan Yu1, Changyi Liu2、*, and Hongwei Zhao1、**
Author Affiliations
  • 1School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, Jilin, China
  • 2Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, Jilin, China
  • show less
    Figures & Tables(48)
    Schematic diagram of angle of compatible EBSD device
    Stretching table of MTI Instruments[33]
    Stretching device of Kammrath & Weiss[34]
    Piezoelectric driven medium and low frequency tensile fatigue testing device[39]
    Ultrasonic fatigue SEM system[40]
    Deformation measurement of tensile samples[43]. (a) Schematic diagram of sample deformation;
    Biaxial tensile device[61]
    SEM-EBSD biaxial tensile device[62]
    Tensile-torsional in-situ testing setup[63]
    Tensile-bending in-situ testing setup[64]
    In-situ heating method[68]
    SEM/EBSD-compatible laser heating device[73]. (a) Schematic diagram of heating device;
    In-situ heating device[74]
    Heating device produced by Shimadzu Corporation, Japan[75]
    Hybrid heating unit[76]
    Schematic diagram of heating unit[77]
    High-temperature in-situ testing setup[80]
    Schematic diagram of internal structure of high-temperature heating module[81]
    EBSD-compatible in-situ high-temperature stretching device[82]
    SEM/EBSD in-situ low-temperature stretching device[87]
    Temperature measurement method of in-situ SEM low-temperature stretching device[88]
    In-situ variable temperature tensile loading device[91]
    In-situ high-temperature tensile testing of failure mechanisms of nickel-based high-temperature alloys at different temperatures[103]
    In-situ EBSD images of non-deformed high-temperature alloys[110]. (a) EBSD sampling areas; (b), (c), and (d) are IPF, KAM, and GND density maps in xz plane, respevtively; (e), (f), and (g) are IPF, KAM, and GND density maps in xy plane
    In-situ EBSD observation of grain growth at different annealing temperatures[113]
    SEM in-situ three-point bending different strain distribution with grain orientation superimposed[119].
    In-situ tensile microstructure characterization of high entropy alloy[120]. (a) EBSD plot of sample at 0% tensile strain; (b) SEM image of sample at 0% strain; (c) DIC plot of sample at 18% tensile strain; (d) SEM image of sample at 18% strain
    Physical picture of sample rod[125]
    TEM in-situ tensile fatigue device[131]
    Thermally actuated MEMS stretching device[132]
    Electrostatically driven TEM in-situ testing setup[135]
    Schematic diagram of electrostatically driven stretching device[136]
    Schematic diagram of TEM in-situ resistance heater[137]
    TEM high-temperature mechanical loading device[143]
    TEM in-situ MEMS heating device[144]
    Schematic diagram of TEM heating device[145]. (a) MEMS heating device; (b) MEMS heating temperature distribution
    XRD in-situ tensile experimental setup[168]
    Biaxial tensile device mounted on a synchrotron[169]
    Biaxial tensile/compression and low circumference fatigue experimental setup[170]
    Planar biaxial loading device[171]
    XRD-compatible in-situ biaxial device[172]
    In-situ XRD biaxial loading device[173]
    Synchrotron radiation XRD in-situ ultra-high temperature tensile testing device[174]
    Neutron in-situ measurement variable temperature uniaxial stretching device[175]
    Variable temperature ambient chamber[175]
    • Table 1. Commercial in-situ mechanical properties testing devices

      View table

      Table 1. Commercial in-situ mechanical properties testing devices

      CompanyProduct type and modelPictureMain technical specification
      Deben,UK2 kN vertical three-point bending device[49]Function:three-point four-point bending;compatible with SEM and OM;maximum load:2 kN;rate:0.05-5 mm/min
      Deben,UK5 kN tensile compression and bending device[50]Function:tension and compression,horizontal bending;compatible with SEM,OM;maximum load:5 kN;speed:0.005-50 mm/min;temperature range:253-433 K
      Deben,UK5 kN in-situ fatigue device[51]Function:tension and compression,fatigue;SEM compatible;maximum load:5 kN;speed:0.005-6 mm/min;can be equipped with heating table
      Gatan,USAMICROTEST 2000E in-situ stretching device[52]Function:single-axis tension and compression;load:max. 2 kN;stroke:10 mm;speed:0.033-0.4 mm/min
      Qiyue,ChinaIn-situ high-temperature fatigue device[53]Function:high temperature creep fatigue;SEM compatible;maximum load:2 kN;temperature:room temperature ~1273 K
      Qiyue,ChinaMINI-MTSdevice[54]Function:stretching and compression,three-point bending;compatible with SEM,EBSD;maximum load:10 kN;speed:0.001-0.1 mm/min;can be equipped with heating table
      Kammrath & Weiss,GermanyIn-situ tensile/compression testing device[55]Function:single-axis stretching and compression;SEM compatible;maximum load:10 kN;rate:0.006-1.2 mm/min;temperature:room temperature ~1273 K
      Kammrath & Weiss,Germany200 N in-situ bending testdevice[56]Function:Three- or four-point bending;SEM compatible;speed:0.012-1.2 mm/min
    • Table 2. In-situ cryogenic devices

      View table

      Table 2. In-situ cryogenic devices

      CompanyProduct type and modelPictureMain technical specification
      Qiyue,ChinaLiquid nitrogen cryogenic table[84]Temperature range:140-423 K;cooling rate:>20 K/min
      Gatan,USAGatan C1 series liquid nitrogen cryogenic table[85]Temperature range:88-673 K;cooling rate:>20 K/min
      Gatan,USACF302 liquid helium cryogenic table[85]Temperature range:4-140 K;cooling rate:>3 K/min
      Deben,UKEnhanced low-temperature table[86]Temperature range:248-433 K;maximum cooling rate:>20 K/min
      Deben,UKUltra-low-temperature cryogenic table[86]Temperature range:223-323 K;maximum cooling rate:>20 K/min
    • Table 3. Summary of in-situ testing techniques for mechanical properties of materials

      View table

      Table 3. Summary of in-situ testing techniques for mechanical properties of materials

      Microscopic instrumentTest contentCharacteristicKey technology
      SEMSEM:surface microstructure morphology;EBSD:lattice orientation;EDS:elemental type and content analysisLarge field of view,large depth of field,large cavity space,good compatibility,and low priceSpatial compatibility,functional compatibility,vacuum compatibility,electrical,thermal,and magnetic compatibility,imaging distance,and angle compatibility
      TEMInternal organization and morphology and crystal structure observationHigh resolution,difficult specimen preparation,small cavity space,poor compatibility,and high cost
      Diffraction imagingMaterial internal microstructure,crystal structure,and residual stress measurementHigh spatial resolution,good compatibility,complex instrument structure,large size,and expensive price
    Tools

    Get Citation

    Copy Citation Text

    Wenjuan Xing, Zhonghan Yu, Changyi Liu, Hongwei Zhao. In-Situ Testing Techniques for Mechanical Properties of Materials: Development and Applications[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Dec. 20, 2022

    Accepted: Jan. 4, 2023

    Published Online: Feb. 14, 2023

    The Author Email: Liu Changyi (hwzhao@jlu.edu.cn), Zhao Hongwei (liuchangyi@jlu.edu.cn)

    DOI:10.3788/LOP223365

    Topics