Acta Physica Sinica, Volume. 69, Issue 1, 010205-1(2020)

Dynamics of localized wave solutions for a higher-order Ablowitz-Ladik equation

Xiao-Yong Wen* and Hao-Tian Wang
Figures & Tables(4)
(a1)−(c1) One-soliton solution with parameter; (a2)−(c2) two-soliton solution with parameters. Left column: Exact solutions; Middle column: Numerical solutions without noise; Right column: Numerical solutions with small noise.(a1)−(c1)取参数时的一孤子解; (a2)−(c2)取参数时的二孤子解. 左列: 精确解; 中列: 数值解; 右列: 加小噪声的数值解. 圈中的数字1和2分别表示参数和对应的孤子
(a1)−(c1) One-breather solution with parameter; (a2)−(c2) two-breather solution with parameters. Left column: Exact solutions; Middle column: Numerical solutions without noise; Right column: Numerical solutions with small noise.(a1)−(c1)取参数时的一呼吸子解; (a2)−(c2)取参数时的二呼吸子解. 左列: 精确解; 中列: 数值解; 右列: 加小噪声的数值解. 圈中的数字1和2分别表示参数和对应的呼吸子
(a1)−(c1) First-order rogue wave solution; (a2)−(c2) strong interaction second-order rogue wave solution with; (a3)−(c3) weak interaction second-order rogue wave solution with. Left column: Exact solutions; Middle column: Numerical solutions without noise; Right column: Numerical solutions with small noise.(a1)—(c1)一阶怪波解; (a2)—(c2)取参数时具有强作用的二阶怪波解; (a3)—(c3)取参数时具有弱作用的二阶怪波解. 左列: 精确解; 中列: 数值解; 右列: 加小噪声的数值解
(a1)−(c1) Mixed strong interaction between one-breather and first-order rogue wave; (a2)−(c2) mixed weak interaction between one-breather and first-order rogue wave. Left column: Exact solutions; Middle column: Numerical solutions without noise; Right column: Numerical solutions withsmall noise.(a1)—(c1)一呼吸子和一阶怪波的混合强作用; (a2)—(c2)一呼吸子和一阶怪波的混合弱作用. 左列: 精确解; 中列: 数值解; 右列: 加小噪声的数值解. 圈中的数字1表示呼吸子, 数字2表示怪波
Tools

Get Citation

Copy Citation Text

Xiao-Yong Wen, Hao-Tian Wang. Dynamics of localized wave solutions for a higher-order Ablowitz-Ladik equation[J]. Acta Physica Sinica, 2020, 69(1): 010205-1

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Aug. 17, 2019

Accepted: --

Published Online: Nov. 4, 2020

The Author Email:

DOI:10.7498/aps.69.20191235

Topics