Semiconductor Optoelectronics, Volume. 43, Issue 1, 31(2022)

Reconfiguration and Intellectualization of Microwave Photonic Networks

YAO Yuhan and DONG Jianji*
Author Affiliations
  • [in Chinese]
  • show less
    References(45)

    [1] [1] Zhu B, Tang J, Zhang W, et al. Broadband instantaneous multi-frequency measurement based on a Fourier domain mode-locked laser[J]. IEEE Trans. on Microwave Theory and Techniques, 2021, 69(10): 4576-4583.

    [2] [2] Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.

    [3] [3] Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 2013, 7(4): 506-538.

    [4] [4] Fandio J S, Muoz P, Doménech D, et al. A monolithic integrated photonic microwave filter[J]. Nature Photonics, 2016, 11(2): 124-129.

    [5] [5] Zou X, Lu B, Pan W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5): 711-734.

    [6] [6] Pan S, Zhang Y. Microwave photonic radars[J]. J. of Lightwave Technol., 2020, 38(19): 5450-5484.

    [7] [7] Serafino G, Maresca S, Porzi C, et al. Microwave photonics for remote sensing: From basic concepts to high-level functionalities[J]. J. of Lightwave Technol., 2020, 38(19): 5339-5355.

    [8] [8] Zhuang L, Roeloffzen C G H, Hoekman M, et al. Programmable photonic signal processor chip for radiofrequency applications[J]. Optica, 2015, 2(10): 854.

    [9] [9] Liu W, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor[J]. Nature Photonics, 2016, 10(3): 190-195.

    [10] [10] Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nature Communications, 2017, 8(1): 1925.

    [11] [11] Bogaerts W, Perez D, Capmany J, et al. Programmable photonic circuits[J]. Nature, 2020, 586(7828): 207-216.

    [12] [12] Perez-Lopez D, Lopez A, DasMahapatra P, et al. Multipurpose self-configuration of programmable photonic circuits[J]. Nature Communications, 2020, 11(1): 6359.

    [13] [13] Zhang W, Yao J. Photonic integrated field-programmable disk array signal processor[J]. Nature Communications, 2020, 11(1): 406.

    [14] [14] Toole R, Tait A N, Ferreira de Lima T, et al. Photonic implementation of spike-timing-dependent plasticity and learning algorithms of biological neural systems[J]. J. of Lightwave Technol., 2016, 34(2): 470-476.

    [15] [15] Harris N C, Steinbrecher G R, Prabhu M, et al. Quantum transport simulations in a programmable nanophotonic processor[J]. Nature Photonics, 2017, 11(7): 447-452.

    [16] [16] Shen Y, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 2017, 11(7): 441-446.

    [17] [17] Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569(7755): 208-214.

    [18] [18] Inagaki T, Inaba K, Leleu T, et al. Collective and synchronous dynamics of photonic spiking neurons[J]. Nature Communications, 2021, 12(1): 2325.

    [19] [19] Xie Y, Geng Z, Zhuang L, et al. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity[J]. Nanophotonics, 2017, 7(2): 421-454.

    [20] [20] Qiu H, Zhang X, Zhou F, et al. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator[J]. J. of Lightwave Technol., 2018, 36(19): 4312-4318.

    [21] [21] Jiang H, Marpaung D, Pagani M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1): 30.

    [22] [22] Zhang J, Gao L, Yao J. Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter[J]. IEEE Photon. Technol. Lett., 2014, 26(4): 326-329.

    [23] [23] Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator[J]. Nature Communications, 2010, 1(3): 29.

    [24] [24] Li M, Yao J. Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating[J]. J. of Lightwave Technol., 2011, 29(17): 2506-2511.

    [25] [25] Xu X, Wu J, Shoeiby M, et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source[J]. APL Photonics, 2017, 2(9): 096104.

    [26] [26] Zhu T, Zhou Y, Lou Y, et al. Plasmonic computing of spatial differentiation[J]. Nature Communications, 2017, 8: 15391.

    [27] [27] Tan M, Xu X, Corcoran B, et al. RF and microwave fractional differentiator based on photonics[J]. IEEE Trans. on Circuits and Systems II: Express Briefs, 2020, 67(11): 2767-2771.

    [28] [28] Tan M, Mitchell A, Moss D J, et al. Microwave and RF photonic fractional Hilbert transformer based on a 50GHz Kerr micro-comb[J]. J. of Lightwave Technol., 2019, 37(24): 6097-6104.

    [29] [29] Tang Z, Pan S. A filter-free photonic microwave single sideband mixer[J]. IEEE Microwave and Wireless Components Lett., 2016, 26(1): 67-69.

    [30] [30] Perez-Lopez D, Gutierrez A M, Sanchez E, et al. Integrated photonic tunable basic units using dual-drive directional couplers[J]. Opt. Express, 2019, 27(26): 38071-38086.

    [31] [31] Wang M, Ribero A, Xing Y, et al. Tolerant, broadband tunable 2×2 coupler circuit[J]. Opt. Express, 2020, 28(4): 5555-5566.

    [32] [32] Teng M, Fathpour S, Safian R, et al. Miniaturized silicon photonics devices for integrated optical signal processors[J]. J. of Lightwave Technol., 2020, 38(1): 6-17.

    [33] [33] Zou X, Zou F, Cao Z, et al. A multifunctional photonic integrated circuit for diverse microwave signal generation, transmission, and processing[J]. Laser & Photonics Reviews, 2019, 13(6): 1800240.

    [34] [34] Marpaung D, Yao J, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13(2): 80-90.

    [35] [35] Zhang W, Yao J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation[J]. J. of Lightwave Technol., 2018, 36(19): 4655-4663.

    [36] [36] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 2018, 557(7703): 81-85.

    [37] [37] Dai D, Yin Y, Yu L, et al. Silicon-plus photonics[J]. Frontiers of Optoelectronics, 2016, 9(3): 436-449.

    [38] [38] Bogaerts W, Li Y, Pathak S, et al. Integrated design for integrated photonics: From the physical to the circuit level and back[J]. Proc. of SPIE, 2013, 8781: 2.

    [39] [39] Capmany J, Pérez D. Programmable Integrated Photonics for Quantum Systems[M]. Oxford: Oxford University Press, 2020.

    [40] [40] Harris N C, Carolan J, Bunandar D, et al. Linear programmable nanophotonic processors[J]. Optica, 2018, 5(12): 1623.

    [41] [41] Thomson D J, Hu Y, Reed G T, et al. Low loss MMI couplers for high performance MZI modulators[J]. IEEE Photon. Technol. Lett., 2010, 22(20): 1485-1487.

    [42] [42] Perez D, Gasulla I, Capmany J, et al. Reconfigurable lattice mesh designs for programmable photonic processors[J]. Opt. Express, 2016, 24(11): 12093-12106.

    [43] [43] Reck M, Zeilinger A, Bernstein H J, et al. Experimental realization of any discrete unitary operator[J]. Phys. Rev. Lett., 1994, 73(1): 58-61.

    [44] [44] Zhou H, Zhao Y, Wang X, et al. Self-configuring and reconfigurable silicon photonic signal processor[J]. ACS Photonics, 2020, 7(3): 792-799.

    [45] [45] Zhou H, Zhao Y, Xu G, et al. Chip-scale optical matrix computation for pagerank algorithm[J]. IEEE J. Sel. Top. Quantum Electron., 2020, 26(2): 1-10.

    Tools

    Get Citation

    Copy Citation Text

    YAO Yuhan, DONG Jianji. Reconfiguration and Intellectualization of Microwave Photonic Networks[J]. Semiconductor Optoelectronics, 2022, 43(1): 31

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 11, 2022

    Accepted: --

    Published Online: Mar. 24, 2022

    The Author Email: Jianji DONG (jjdong@hust.edu.cn)

    DOI:10.16818/j.issn1001-5868.2022011102

    Topics