Opto-Electronic Engineering, Volume. 40, Issue 9, 1(2013)
Image Super-resolution Reconstruction with Regularization Restoration and Sparse Representation
[1] [1] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction:a technical overview [J]. IEEE Signal Processing Magazine(S1053-5888), 2003, 20(3):21-36.
[2] [2] MILANFAR P. Super-resolution imaging [M]. Boca Raton:CRC Press, 2010:1-24.
[3] [3] PUETTER R C, GOSNELL T R, YAHIL A. Digital image restoration:deblurring and denoising [J]. Annual Review of Astronomy and Astrophysics(S0066-4146), 2005, 4(1):139-194.
[4] [4] Ouwerkerk J D. Image super-resolution survey [J]. Image and Vision Computing(S0262-8856), 2006, 24(3):1039-1052.
[5] [5] BAKER S, KANADE T. Limits on super-resolution and how to break them [C]// IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, S C, 2000:372-379.
[6] [6] FREEMAN W T, JONES R J, PASZTOR E C. Example-based super-resolution [J]. IEEE Transaction on Computer Graphics and Application (S0272-1716), 2002, 22(2):56-65.
[7] [7] CHANG Hong, YEUNG Dit-Yan, XIONG Yimin. Super-resolution through neighbor embedding [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, 2004:275-282.
[8] [8] LIN Zhouchen, HE Junfeng, TANG Xiaoou, et al. Limits of learning-based super-resolution algorithms [J]. International Journal of Computer Vision(S0920-5691), 2008, 80(1):406-420.
[9] [9] YANG Jianchao, WRIGHT J, MA Yi, et al. Image super-resolution as sparse representation of raw image patches [C]//IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, 2008:1-8.
[10] [10] YANG Jianchao, WRIGHT J, MA Yi, et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing(S1057-7149), 2010, 19(11):2861-2873.
[12] [12] ROMAN Z, ELAD M, PROTTER M. On single image scale-up using sparse-representations [C]// 7th International Conferences on Curves and Surfaces, Avignon, France, 2010:711-730.
[13] [13] BIOUCAS J, FIGUEIREDO M, OLIVEIRA J. Total variation image deconvolution:a majorization-minimization approach[C]// IEEE Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 2006.
[14] [14] BABACAN S D, MOLINA R, KATSAGGELOS A K. Variational bayesian blind deconvolution using a total variation prior [J]. IEEE Transaction on Image Processing(S1057-7149), 2009, 18(1):12-26.
[15] [15] BABACAN S D, MOLINA R, KATSAGGELOS A K. Generalized gaussian markov random field image restoration using variational distribution approximation [C]// IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, Nevada, 2008:1265-1268.
[16] [16] BRUCKSTEIN A, DONOHO D L, ELAD M. From sparse solutions of systems of equations to sparse modeling of signals and images [J]. SIAM Review(S0036-1445), 2009, 51(1):34-81.
[17] [17] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD:an algorithm for designing over-complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing(S1053-587X), 2006, 54(11):4311-4322.
[18] [18] NEEDELL D. Topics in compressed sensing [D]. Davis:University of California, 2009.
[19] [19] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:form error visibility to structural similarity [J]. IEEE Transactions on Image Processing(S1057-7149), 2004, 13(4):600-612.
Get Citation
Copy Citation Text
LU Jinzheng, WU Bin, ZHANG Qiheng. Image Super-resolution Reconstruction with Regularization Restoration and Sparse Representation[J]. Opto-Electronic Engineering, 2013, 40(9): 1
Category:
Received: May. 27, 2013
Accepted: --
Published Online: Sep. 17, 2013
The Author Email: Jinzheng LU (lujinzheng@163.com)