Infrared and Laser Engineering, Volume. 52, Issue 5, 20220742(2023)

Low thermal expansion optimization of composite support structure for missile-borne optical system

Xuan Wang and Chenqi Zhao
Author Affiliations
  • College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
  • show less
    Figures & Tables(23)
    Main dimensions of titanium alloy support structure
    Simulation calculation cloud chart of thermal expansion deformation of titanium alloy support structure
    Dimension drawing of test piece
    Curing process curve
    Thermal expansion coefficient test specimen
    Thermal expansion tester (DIL402)
    Nephogram of thermal expansion simulation
    Strain-temperature curves obtained from thermal expansion deformation test and simulation analysis
    Optimal design route of composite support structure
    Initial model of composite structure
    2D model of composite structure for optimization
    Finite element model of composite supporting structure
    Cloud chart of simulation calculation of thermal expansion deformation
    • Table 1. Test matrix

      View table
      View in Article

      Table 1. Test matrix

      Group numberLayersQuantity
      A[048] 10
      B[9048] 6
      C[(0/45/90/−45)6]S10
    • Table 2. Test results of thermal expansion coefficient along the length direction of test piece

      View table
      View in Article

      Table 2. Test results of thermal expansion coefficient along the length direction of test piece

      Group numberCoefficient of thermal expansion×10−6/℃ Average× 10−6/℃ Coefficient of variation
      A1 1.2861.3970.117
      A2 1.359
      A3 1.153
      A4 1.509
    • Table 3. Material parameters of TU/SYT49S-130

      View table
      View in Article

      Table 3. Material parameters of TU/SYT49S-130

      ParameterValue
      Longitudinal elastic modulus/GPa135
      Transverse elastic modulus/GPa8.35
      Poisson's ratio0.3
      Density/g·cm−31.04
      Shear modulus/GPa5.31
    • Table 4. Thermal expansion coefficient of carbon fiber and epoxy resin[11]

      View table
      View in Article

      Table 4. Thermal expansion coefficient of carbon fiber and epoxy resin[11]

      ParameterT700 carbon fiber (longitudinal)Epoxy resin
      Coefficient of thermal expansion/℃−1−0.381×10−656.8×10−6
    • Table 5. Reduction ratio of thermal expansion deformation of two-dimensional composite support structure compared with titanium alloy structure

      View table
      View in Article

      Table 5. Reduction ratio of thermal expansion deformation of two-dimensional composite support structure compared with titanium alloy structure

      Iteration orderPly shape optimizationPly thickness optimizationPly sequence optimization
      145.8%54.4%59.4%
      270.7%72.2%74.2%
      371.7%73.7%76.0%
      480.3%82.1%84.1%
      588.2%89.4%89.8%
    • Table 6. Optimization results of ply shape of composite support structure in five iterations

      View table
      View in Article

      Table 6. Optimization results of ply shape of composite support structure in five iterations

      Iteration orderCATIA model before optimization Optimization result of ply shape Thermal expansion deformation/mm Reduction relative to thermal expansion of titanium alloy
      11.17×10−245.8%
      26.32×10−370.7%
      36.12×10−371.7%
      44.25×10−380.3%
      52.54×10−388.2%
    • Table 7. Optimization results of ply thickness of composite support structure in five iterations

      View table
      View in Article

      Table 7. Optimization results of ply thickness of composite support structure in five iterations

      Iteration orderThickness after optimization/mmNumber of plies after optimizationThermal expansion deformation/mm Reduction relative to thermal expansion of titanium alloy
      Main bodySide plateMain bodySide plate
      18.04.564369.86×10−354.4%
      27.254.7558386.01×10−372.2%
      37.254.7558385.69×10−373.7%
      47.754.7562383.87×10−382.1%
      55.753.546282.29×10−389.4%
    • Table 8. Optimization results of ply sequence of composite support structure in five iterations

      View table
      View in Article

      Table 8. Optimization results of ply sequence of composite support structure in five iterations

      Iteration order Ply sequence before optimizationPly sequence after optimizationThermal expansion deformation/mmReduction relative to thermal expansion of titanium alloy
      Main bodySide plateMain bodySide plate
      1[012/3010/−3010]S[04/308/−308]S[03/−30/302/0/−30/30/−303/ 302/−30/30/−30/0/−30/03/ −30/30/03/302/−30/30/0]S[0/302/−30/302/−302/302/ −302/02/30/−30/0/−302/30]S8.76×10−359.4%
      2[013/308/−308]S[05/307/−307]S[0/302/0/−30/302/0/30/−30/0/30/02/−30/0/30/−30/0/30/02/ −30/0/−30/−302/0]S[0/−302/0/30/0/−30/0/ −302/30/−30/303/0/−30/302]S5.57×10−374.2%
      3[09/3010/−3010]S[05/307/−307]S[0/303/−30/02/−302/30/04/ −30/02/30/−303/304/−302/ 30/−30]S[0/−302/302/−30/303/ −30/30/02/−30/0/−302/0/30]S5.18×10−376.0%
      4[017/307/−307]S[05/307/−307]S[0/−30/02/303/02/−30/03/30/ 04/302/03/−304/02/−30/30]S[02/302/0/−30/30/−302/304/−30/02/−303]S3.44×10−384.1%
      5[07/308/−308]S[04/305/−305]S[0/−30/30/−302/30/02/30/0/ −30/304/−303/0/−30/0/30/0]S[0/303/0/30/02/−303/30/−302]S2.20×10−389.8%
    • Table 9. Results of modal analysis

      View table
      View in Article

      Table 9. Results of modal analysis

      OrderComposite support structureTitanium alloy support structure
      FirstVibration mode diagram
      Frequency/Hz1 312.51 054.9
      SecondVibration mode diagram
      Frequency/Hz1 361.71 290.4
      ThirdVibration mode diagram
      Frequency/Hz2 334.61 921.1
    • Table 21. [in Chinese]

      View table
      View in Article

      Table 21. [in Chinese]

      续表 2Continued Tab.2
      Group numberCoefficient of thermal expansion×10−6/℃ Average× 10−6/℃ Coefficient of variation
      A5 1.6161.3970.117
      A6 1.601
      A7 1.328
      A8 1.196
      A9 1.542
      A10 1.383
      B1 38.54637.950.059
      B2 36.729
      B3 39.558
      B4 38.998
      B5 39.875
      B6 34.006
      C1 4.1254.1410.101
      C2 4.102
      C3 4.156
      C4 3.939
      C5 4.564
      C6 3.970
      C7 3.674
      C8 3.537
      C9 4.391
      C10 4.957
    Tools

    Get Citation

    Copy Citation Text

    Xuan Wang, Chenqi Zhao. Low thermal expansion optimization of composite support structure for missile-borne optical system[J]. Infrared and Laser Engineering, 2023, 52(5): 20220742

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Material & Thim films

    Received: Oct. 25, 2022

    Accepted: --

    Published Online: Jul. 4, 2023

    The Author Email:

    DOI:10.3788/IRLA20220742

    Topics