Matter and Radiation at Extremes, Volume. 6, Issue 6, 065903(2021)

Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave

Jie Qiu1... Liang Hao1,a), Lihua Cao1,2 and Shiyang Zou1 |Show fewer author(s)
Author Affiliations
  • 1Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 2HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
  • show less
    References(44)

    [1] D. H.Edgell, D. H.Froula, D. E.Hinkel, I. V.Igumenshchev, A. V.Maximov, D. T.Michel, P.Michel, J. D.Moody, J. F.Myatt, W.Seka, R. W.Short, J.Zhang. Multiple-beam laser-plasma interactions in inertial confinement fusion. Phys. Plasmas, 21, 055501(2014).

    [2] R.Berger, E.Dewald, L.Divol, S.Glenzer, D.Hinkel, R. K.Kirkwood, J.Kline, O.Landen, J.Lindl, B.Macgowan, P.Michel, J.Milovich, J. D.Moody, H.Rose, M.Rosen, E.Williams, L.Yin. A review of laser-plasma interaction physics of indirect-drive fusion. Plasma Phys. Controlled Fusion, 55, 103001(2013).

    [3] Y. J.Gu, O.Klimo, J.Limpouch, V.Tikhonchuk, S.Weber. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes. Matter Radiat. Extremes, 4, 045402(2019).

    [4] D. A.Callahan, L.Divol, S.Dixit, M. J.Edwards, S. H.Glenzer, S. W.Haan, D. E.Hinkel, J. D.Lindl, B. J.MacGowan, P.Michel, J. D.Salmonson, L. J.Suter, C. A.Thomas, S.Weber, E. A.Williams. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).

    [5] D. K.Bradley, D.Callahan, L.Divol, S.Dixit, S.Glenn, S. H.Glenzer, D.Hinkel, R. K.Kirkwood, J. L.Kline, W. L.Kruer, G. A.Kyrala, S.Le Pape, J.Lindl, B. J.MacGowan, N. B.Meezan, P.Michel, L. J.Suter, R.Town, K.Widmann, E. A.Williams. Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility. Phys. Plasmas, 17, 056305(2010).

    [6] L. J.Atherton, R. L.Berger, E.Bond, D. K.Bradley, D. A.Callahan, E. L.Dewald, L.Divol, S.Dixit, M. J.Edwards, S.Glenn, S. H.Glenzer, A.Hamza, C.Haynam, D. E.Hinkel, N.Izumi, O.Jones, J. D.Kilkenny, R. K.Kirkwood, J. L.Kline, W. L.Kruer, G. A.Kyrala, O. L.Landen, S.LePape, J. D.Lindl, B. J.MacGowan, N. B.Meezan, P.Michel, J. D.Moody, E. I.Moses, A.Nikroo, M. D.Rosen, M. B.Schneider, D. J.Strozzi, L. J.Suter, C. A.Thomas, R. P. J.Town, K.Widmann, E. A.Williams. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys., 8, 344-349(2012).

    [7] L.Hao, X. Y.Hu, B.Li, Z. J.Liu, J.Xiang, C. Y.Zheng. Study of crossed-beam energy transfer process with large crossing angle in three-dimension. Laser Part. Beams, 34, 270-275(2016).

    [8] C. E.Capjack, V. V.Eliseev, W.Rozmus, V. T.Tikhonchuk. Interaction of crossed laser beams with plasmas. Phys. Plasmas, 3, 2215-2217(1996).

    [9] L. F.Berzak Hopkins, L.Divol, D. E.Hinkel, A. L.Kritcher, P.Michel, J. D.Moody, J. E.Ralph, J. S.Ross, D.Turnbull. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments. Phys. Rev. Lett., 114, 125001(2015).

    [10] D. H.Froula, S. X.Hu, A. V.Maximov, D. T.Michel, J. F.Myatt, W.Seka, R. W.Short, A. A.Solodov, B.Yaakobi. Experimental validation of the two-plasmon-decay common-wave process. Phys. Rev. Lett., 109, 155007(2012).

    [11] R. L.Berger, E. L.Dewald, L.Divol, M.Hohenberger, L. B.Hopkins, O. S.Jones, W. L.Kruer, P.Michel, J. L.Milovich, J. D.Moody. Multibeam stimulated Raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett., 115, 055003(2015).

    [12] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, S. W.Haan, R. L.Kauffman, O. L.Landen, J. D.Lindl, L. J.Suter. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339-491(2004).

    [13] D. S.Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).

    [14] L. H.Cao, Q. S.Feng, L.Hao, X. T.He, Z. J.Liu, C.Ning, C. Z.Xiao, C. Y.Zheng. Interaction of parametric instabilities from 3ω and 2ω lasers in large-scale inhomogeneous plasmas. Nucl. Fusion, 60, 066012(2020).

    [15] L. H.Cao, Q. S.Feng, X. T.He, Z. J.Liu, C. Y.Zheng. Stimulated Brillouin scattering of backward stimulated Raman scattering. Sci. Rep., 10, 3492(2020).

    [16] L.Hao, W. Y.Huo, J.Li, Z. J.Liu, C.Ren, C. Y.Zheng. A frequency filter of backscattered light of stimulated Raman scattering due to the Raman rescattering in the gas-filled hohlraums. Nucl. Fusion, 61, 036041(2021).

    [17] Z. H.Fang, Y.Ji, C. W.Lian, C.Ren, Z. H.Wan, C.Wang, R.Yan, D.Yang, B.Zhao, J.Zheng. Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime. Matter Radiat. Extremes, 6, 015901(2021).

    [18] B. L.Albright, E.Bond, K. J.Bowers, D.Callahan, E.Dewald, L.Divol, N. J.Fisch, S.Glenzer, C.Haynam, D.Hinkel, C.Joshi, R. K.Kirkwood, J.Kline, O.Landen, R.London, B. J.Macgowan, N.Meezan, P.Michel, J. D.Moody, Y.Ping, H.Rose, W.Seka, S.Suckewer, L.Suter, D.Turnbull, T. L.Wang, E.Williams, J. S.Wurtele, L.Yin. Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition. Phys. Plasmas, 18, 056311(2011).

    [19] C.Baccou, R.Bahr, S.Depierreux, P.Fremerye, J.Katz, P.-E.Masson-Laborde, M.-C.Monteil, C.Neuville, D.Pesme, F.Philippe, W.Seka, P.Seytor, V.Tassin, D.Teychenné. Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves. Phys. Rev. Lett., 116, 235002(2016).

    [20] C.Baccou, R.Bahr, L.Borisenko, N.Borisenko, M.Casanova, A.Colaitis, A.Debayle, S.Depierreux, G.Duchateau, P.Fremerye, A.Heron, S.Huller, J.Katz, C.Labaune, P.Loiseau, P.-E.Masson-Laborde, M.-C.Monteil, C.Neuville, P.Nicolai, A.Orekhov, D.Pesme, F.Philippe, C.Riconda, W.Seka, P.Seytor, C.Stoeckl, V.Tassin, D.Teychenné, V.Tikhonchuk, G.Tran. Experimental investigation of the collective stimulated Brillouin and Raman scattering of multiple laser beams in inertial confinement fusion experiments. Plasma Phys. Controlled Fusion, 62, 014024(2019).

    [21] H. A.Baldis, R. S.Craxton, J.Fuchs, D. D.Meyerhofer, S. P.Regan, W.Seka, R. W.Short, C.Stoeckl, B.Yaakobi. Multibeam stimulated Brillouin scattering from hot, solid-target plasmas. Phys. Rev. Lett., 89, 175002(2002).

    [22] H. B.Cai, Y. K.Ding, T.Gong, L.Guo, L.Hao, S. E.Jiang, X. H.Jiang, P.Li, Q.Li, S. W.Li, X.Li, Y. L.Li, Z. C.Li, S. Y.Liu, X. M.Liu, Y. Y.Liu, Z. J.Liu, X. S.Peng, D.Wang, F.Wang, F.Wang, Z. B.Wang, T.Xu, D.Yang, J. M.Yang, B. H.Zhang, R.Zhang, Y.Zhang, C. Y.Zheng, J.Zheng, S. Y.Zou. Recent research progress of laser plasma interactions in Shenguang laser facilities. Matter Radiat. Extremes, 4, 055202(2019).

    [23] B.Bezzerides, D. F.DuBois, H. A.Rose. Collective parametric instabilities of many overlapping laser beams with finite bandwidth. Phys. Fluids B, 4, 241-251(1992).

    [24] X. T.He, Z. J.Liu, C. Z.Xiao, Y.Yin, C. Y.Zheng, H. B.Zhuo. Linear theory of multibeam parametric instabilities in homogeneous plasmas. Phys. Plasmas, 26, 062109(2019).

    [25] Z. M.Sheng, S. M.Weng, C. F.Wu, Y.Zhao, J. Q.Zhu. Mitigation of multibeam stimulated Raman scattering with polychromatic light. Plasma Phys. Controlled Fusion, 63, 055006(2021).

    [26] X. T.He, Z. J.Liu, C. Z.Xiao, S. J.Yang, Y.Yin, C. Y.Zheng, H. B.Zhuo. Growth and saturation of stimulated Raman scattering in two overlapping laser beams. Phys. Rev. E, 102, 013205(2020).

    [27] D. W.Forslund, J. M.Kindel, E. L.Lindman. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids, 18, 1002-1016(1975).

    [28] L.Hao, X. Y.Hu, S. W.Li, Z. C.Li, Z. J.Liu, X. S.Peng, F.Wang, H. Y.Wei, T.Xu, D.Yang, Y. Q.Zhao, C. Y.Zheng, S. Y.Zou. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code. Phys. Plasmas, 21, 072705(2014).

    [29] H. B.Cai, L. H.Cao, B.Deng, Y. K.Ding, P. J.Gu, L.Guo, L.Hao, M. Q.He, L. F.Hou, S. E.Jiang, X. H.Jiang, B.Li, S. W.Li, X.Li, Y. L.Li, Z. C.Li, J.Liu, S. Y.Liu, X. M.Liu, Y. G.Liu, Y. Y.Liu, Z. J.Liu, X. S.Peng, F.Wang, P.Wang, Q.Wang, S. Z.Wu, T.Xu, D.Yang, J. M.Yang, P.Yang, W. Y.Zha, C. Y.Zheng, W. D.Zheng, S. P.Zhu, S. Y.Zou. Investigation on laser plasma instability of the outer ring beams on SGIII laser facility. AIP Adv., 9, 095201(2019).

    [31] D. A.Callahan, D. H.Froula, D. E.Hinkel, R. A.London, D. J.Strozzi, E. A.Williams. Ray-based calculations of backscatter in laser fusion targets. Phys. Plasmas, 15, 102703(2008).

    [32] R. L.Berger, T.Chapman, L.Divol, D. H.Froula, S. H.Glenzer, R. A.London, N. B.Meezan, P.Neumayer, L. J.Suter. Beyond the gain exponent: Effect of damping, scale length, and speckle length on stimulated scatter. Phys. Rev. E, 91, 031103(2015).

    [33] J. F.Drake, P. K.Kaw, Y. C.Lee, C. S.Liu, M. N.Rosenbluth, G.Schmid. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids, 17, 778-785(1974).

    [34] F. F.Chen. Introduction to Plasma Physics and Controlled Fusion(1984).

    [35] B. B.Afeyan, R. K.Kirkwood, W. L.Kruer, S. C.Wilks. Energy transfer between crossing laser beams. Phys. Plasmas, 3, 382-385(1996).

    [36] R. L.Berger, D. A.Callahan, L.Divol, S. H.Glenzer, P.Michel, W.Rozmus, R. P. J.Town, E. A.Williams. Stochastic ion heating from many overlapping laser beams in fusion plasmas. Phys. Rev. Lett., 109, 195004(2012).

    [37] S. N.Dixit, J. K.Lawson, K. R.Manes, K. A.Nugent, H. T.Powell. Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 19, 417-419(1994).

    [38] R. L.Berger, L.Divol, S.Dixit, M.Dorr, D. H.Froula, S. H.Glenzer, B. A.Hammel, C.Haynam, J. A.Hittinger, J. P.Holder, O. S.Jones, D. H.Kalantar, O. L.Landen, A. B.Langdon, S.Langer, B. J.MacGowan, A. J.Mackinnon, N.Meezan, E. I.Moses, C.Niemann, C. H.Still, L. J.Suter, R. J.Wallace, E. A.Williams, B. K. F.Young. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716-719(2007).

    [39] R. L.Berger, L.Divol, S. H.Glenzer, R. K.Kirkwood, B. J.MacGowan, J. D.Moody, J. E.Rothenberg, E. A.Williams, P. E.Young. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett., 86, 2810-2813(2001).

    [40] I.Barth, N. J.Fisch. Reducing parametric backscattering by polarization rotation. Phys. Plasmas, 23, 102106(2016).

    [41] X. F.Chen, Y.Cui, P. Y.Du, W.Feng, S. Z.Fu, Y. Q.Gao, Y. L.Hua, X. G.Huang, L. J.Ji, F. J.Li, X. L.Li, J.Liu, J. N.Liu, W. X.Ma, W. B.Pei, D. X.Rao, C.Shan, H. T.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T. X.Zhang, X. H.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).

    [42] L.Hao, B.Li, J. W.Li, J.Qiu, H.Xiong, B.Zhang, Z. Q.Zhong. Effective optical smoothing scheme to suppress laser plasma instabilities by time-dependent polarization rotation via pulse chirping. Opt. Express, 29, 1304-1319(2021).

    [43] D. A.Callahan, L.Divol, S.Dixit, M. J.Edwards, S. H.Glenzer, S. W.Haan, D. E.Hinkel, O. L.Landen, J. D.Lindl, B. J.MacGowan, N. B.Meezan, P.Michel, J. D.Salmonson, L. J.Suter, C. A.Thomas, S.Weber, E. A.Williams. Energy transfer between laser beams crossing in ignition hohlraums. Phys. Plasmas, 16, 042702(2009).

    [44] [44] In discussions for zero laser wavelength difference, 90° ≥ φs ≥ −90° for θs = 0° or θs = 180° is adopted to denote different SL modes. For θs = 0, α⊥ = arctan(tan φs/sin θh), while for θs = 180°, α⊥ = 180 − arctan(tan φs/sin θh). Thus, for Δλ0 = 0, α⊥ = 0 corresponds to “forward” in-plane scattering (θs = 0 and φs = 0), α⊥ = 180° corresponds to “backward” in-plane scattering (θs = 180° and φs = 0°), and α⊥ = 90° corresponds to scattering with the largest out-of-plane angle (φs = 90°).

    Tools

    Get Citation

    Copy Citation Text

    Jie Qiu, Liang Hao, Lihua Cao, Shiyang Zou. Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave[J]. Matter and Radiation at Extremes, 2021, 6(6): 065903

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Inertial Confinement Fusion Physics

    Received: Jul. 9, 2021

    Accepted: Sep. 10, 2021

    Published Online: Dec. 7, 2021

    The Author Email: Hao Liang (hao_liang@iapcm.ac.cn)

    DOI:10.1063/5.0062902

    Topics