[1] D. H.Edgell, D. H.Froula, D. E.Hinkel, I. V.Igumenshchev, A. V.Maximov, D. T.Michel, P.Michel, J. D.Moody, J. F.Myatt, W.Seka, R. W.Short, J.Zhang. Multiple-beam laser-plasma interactions in inertial confinement fusion. Phys. Plasmas, 21, 055501(2014).
[2] R.Berger, E.Dewald, L.Divol, S.Glenzer, D.Hinkel, R. K.Kirkwood, J.Kline, O.Landen, J.Lindl, B.Macgowan, P.Michel, J.Milovich, J. D.Moody, H.Rose, M.Rosen, E.Williams, L.Yin. A review of laser-plasma interaction physics of indirect-drive fusion. Plasma Phys. Controlled Fusion, 55, 103001(2013).
[3] Y. J.Gu, O.Klimo, J.Limpouch, V.Tikhonchuk, S.Weber. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement schemes. Matter Radiat. Extremes, 4, 045402(2019).
[4] D. A.Callahan, L.Divol, S.Dixit, M. J.Edwards, S. H.Glenzer, S. W.Haan, D. E.Hinkel, J. D.Lindl, B. J.MacGowan, P.Michel, J. D.Salmonson, L. J.Suter, C. A.Thomas, S.Weber, E. A.Williams. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett., 102, 025004(2009).
[5] D. K.Bradley, D.Callahan, L.Divol, S.Dixit, S.Glenn, S. H.Glenzer, D.Hinkel, R. K.Kirkwood, J. L.Kline, W. L.Kruer, G. A.Kyrala, S.Le Pape, J.Lindl, B. J.MacGowan, N. B.Meezan, P.Michel, L. J.Suter, R.Town, K.Widmann, E. A.Williams. Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility. Phys. Plasmas, 17, 056305(2010).
[6] L. J.Atherton, R. L.Berger, E.Bond, D. K.Bradley, D. A.Callahan, E. L.Dewald, L.Divol, S.Dixit, M. J.Edwards, S.Glenn, S. H.Glenzer, A.Hamza, C.Haynam, D. E.Hinkel, N.Izumi, O.Jones, J. D.Kilkenny, R. K.Kirkwood, J. L.Kline, W. L.Kruer, G. A.Kyrala, O. L.Landen, S.LePape, J. D.Lindl, B. J.MacGowan, N. B.Meezan, P.Michel, J. D.Moody, E. I.Moses, A.Nikroo, M. D.Rosen, M. B.Schneider, D. J.Strozzi, L. J.Suter, C. A.Thomas, R. P. J.Town, K.Widmann, E. A.Williams. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys., 8, 344-349(2012).
[7] L.Hao, X. Y.Hu, B.Li, Z. J.Liu, J.Xiang, C. Y.Zheng. Study of crossed-beam energy transfer process with large crossing angle in three-dimension. Laser Part. Beams, 34, 270-275(2016).
[8] C. E.Capjack, V. V.Eliseev, W.Rozmus, V. T.Tikhonchuk. Interaction of crossed laser beams with plasmas. Phys. Plasmas, 3, 2215-2217(1996).
[9] L. F.Berzak Hopkins, L.Divol, D. E.Hinkel, A. L.Kritcher, P.Michel, J. D.Moody, J. E.Ralph, J. S.Ross, D.Turnbull. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments. Phys. Rev. Lett., 114, 125001(2015).
[10] D. H.Froula, S. X.Hu, A. V.Maximov, D. T.Michel, J. F.Myatt, W.Seka, R. W.Short, A. A.Solodov, B.Yaakobi. Experimental validation of the two-plasmon-decay common-wave process. Phys. Rev. Lett., 109, 155007(2012).
[11] R. L.Berger, E. L.Dewald, L.Divol, M.Hohenberger, L. B.Hopkins, O. S.Jones, W. L.Kruer, P.Michel, J. L.Milovich, J. D.Moody. Multibeam stimulated Raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett., 115, 055003(2015).
[12] P.Amendt, R. L.Berger, S. G.Glendinning, S. H.Glenzer, S. W.Haan, R. L.Kauffman, O. L.Landen, J. D.Lindl, L. J.Suter. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339-491(2004).
[13] D. S.Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).
[14] L. H.Cao, Q. S.Feng, L.Hao, X. T.He, Z. J.Liu, C.Ning, C. Z.Xiao, C. Y.Zheng. Interaction of parametric instabilities from 3ω and 2ω lasers in large-scale inhomogeneous plasmas. Nucl. Fusion, 60, 066012(2020).
[15] L. H.Cao, Q. S.Feng, X. T.He, Z. J.Liu, C. Y.Zheng. Stimulated Brillouin scattering of backward stimulated Raman scattering. Sci. Rep., 10, 3492(2020).
[16] L.Hao, W. Y.Huo, J.Li, Z. J.Liu, C.Ren, C. Y.Zheng. A frequency filter of backscattered light of stimulated Raman scattering due to the Raman rescattering in the gas-filled hohlraums. Nucl. Fusion, 61, 036041(2021).
[17] Z. H.Fang, Y.Ji, C. W.Lian, C.Ren, Z. H.Wan, C.Wang, R.Yan, D.Yang, B.Zhao, J.Zheng. Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime. Matter Radiat. Extremes, 6, 015901(2021).
[18] B. L.Albright, E.Bond, K. J.Bowers, D.Callahan, E.Dewald, L.Divol, N. J.Fisch, S.Glenzer, C.Haynam, D.Hinkel, C.Joshi, R. K.Kirkwood, J.Kline, O.Landen, R.London, B. J.Macgowan, N.Meezan, P.Michel, J. D.Moody, Y.Ping, H.Rose, W.Seka, S.Suckewer, L.Suter, D.Turnbull, T. L.Wang, E.Williams, J. S.Wurtele, L.Yin. Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition. Phys. Plasmas, 18, 056311(2011).
[19] C.Baccou, R.Bahr, S.Depierreux, P.Fremerye, J.Katz, P.-E.Masson-Laborde, M.-C.Monteil, C.Neuville, D.Pesme, F.Philippe, W.Seka, P.Seytor, V.Tassin, D.Teychenné. Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves. Phys. Rev. Lett., 116, 235002(2016).
[20] C.Baccou, R.Bahr, L.Borisenko, N.Borisenko, M.Casanova, A.Colaitis, A.Debayle, S.Depierreux, G.Duchateau, P.Fremerye, A.Heron, S.Huller, J.Katz, C.Labaune, P.Loiseau, P.-E.Masson-Laborde, M.-C.Monteil, C.Neuville, P.Nicolai, A.Orekhov, D.Pesme, F.Philippe, C.Riconda, W.Seka, P.Seytor, C.Stoeckl, V.Tassin, D.Teychenné, V.Tikhonchuk, G.Tran. Experimental investigation of the collective stimulated Brillouin and Raman scattering of multiple laser beams in inertial confinement fusion experiments. Plasma Phys. Controlled Fusion, 62, 014024(2019).
[21] H. A.Baldis, R. S.Craxton, J.Fuchs, D. D.Meyerhofer, S. P.Regan, W.Seka, R. W.Short, C.Stoeckl, B.Yaakobi. Multibeam stimulated Brillouin scattering from hot, solid-target plasmas. Phys. Rev. Lett., 89, 175002(2002).
[22] H. B.Cai, Y. K.Ding, T.Gong, L.Guo, L.Hao, S. E.Jiang, X. H.Jiang, P.Li, Q.Li, S. W.Li, X.Li, Y. L.Li, Z. C.Li, S. Y.Liu, X. M.Liu, Y. Y.Liu, Z. J.Liu, X. S.Peng, D.Wang, F.Wang, F.Wang, Z. B.Wang, T.Xu, D.Yang, J. M.Yang, B. H.Zhang, R.Zhang, Y.Zhang, C. Y.Zheng, J.Zheng, S. Y.Zou. Recent research progress of laser plasma interactions in Shenguang laser facilities. Matter Radiat. Extremes, 4, 055202(2019).
[23] B.Bezzerides, D. F.DuBois, H. A.Rose. Collective parametric instabilities of many overlapping laser beams with finite bandwidth. Phys. Fluids B, 4, 241-251(1992).
[24] X. T.He, Z. J.Liu, C. Z.Xiao, Y.Yin, C. Y.Zheng, H. B.Zhuo. Linear theory of multibeam parametric instabilities in homogeneous plasmas. Phys. Plasmas, 26, 062109(2019).
[25] Z. M.Sheng, S. M.Weng, C. F.Wu, Y.Zhao, J. Q.Zhu. Mitigation of multibeam stimulated Raman scattering with polychromatic light. Plasma Phys. Controlled Fusion, 63, 055006(2021).
[26] X. T.He, Z. J.Liu, C. Z.Xiao, S. J.Yang, Y.Yin, C. Y.Zheng, H. B.Zhuo. Growth and saturation of stimulated Raman scattering in two overlapping laser beams. Phys. Rev. E, 102, 013205(2020).
[27] D. W.Forslund, J. M.Kindel, E. L.Lindman. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids, 18, 1002-1016(1975).
[28] L.Hao, X. Y.Hu, S. W.Li, Z. C.Li, Z. J.Liu, X. S.Peng, F.Wang, H. Y.Wei, T.Xu, D.Yang, Y. Q.Zhao, C. Y.Zheng, S. Y.Zou. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code. Phys. Plasmas, 21, 072705(2014).
[29] H. B.Cai, L. H.Cao, B.Deng, Y. K.Ding, P. J.Gu, L.Guo, L.Hao, M. Q.He, L. F.Hou, S. E.Jiang, X. H.Jiang, B.Li, S. W.Li, X.Li, Y. L.Li, Z. C.Li, J.Liu, S. Y.Liu, X. M.Liu, Y. G.Liu, Y. Y.Liu, Z. J.Liu, X. S.Peng, F.Wang, P.Wang, Q.Wang, S. Z.Wu, T.Xu, D.Yang, J. M.Yang, P.Yang, W. Y.Zha, C. Y.Zheng, W. D.Zheng, S. P.Zhu, S. Y.Zou. Investigation on laser plasma instability of the outer ring beams on SGIII laser facility. AIP Adv., 9, 095201(2019).
[31] D. A.Callahan, D. H.Froula, D. E.Hinkel, R. A.London, D. J.Strozzi, E. A.Williams. Ray-based calculations of backscatter in laser fusion targets. Phys. Plasmas, 15, 102703(2008).
[32] R. L.Berger, T.Chapman, L.Divol, D. H.Froula, S. H.Glenzer, R. A.London, N. B.Meezan, P.Neumayer, L. J.Suter. Beyond the gain exponent: Effect of damping, scale length, and speckle length on stimulated scatter. Phys. Rev. E, 91, 031103(2015).
[33] J. F.Drake, P. K.Kaw, Y. C.Lee, C. S.Liu, M. N.Rosenbluth, G.Schmid. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids, 17, 778-785(1974).
[34] F. F.Chen. Introduction to Plasma Physics and Controlled Fusion(1984).
[35] B. B.Afeyan, R. K.Kirkwood, W. L.Kruer, S. C.Wilks. Energy transfer between crossing laser beams. Phys. Plasmas, 3, 382-385(1996).
[36] R. L.Berger, D. A.Callahan, L.Divol, S. H.Glenzer, P.Michel, W.Rozmus, R. P. J.Town, E. A.Williams. Stochastic ion heating from many overlapping laser beams in fusion plasmas. Phys. Rev. Lett., 109, 195004(2012).
[37] S. N.Dixit, J. K.Lawson, K. R.Manes, K. A.Nugent, H. T.Powell. Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 19, 417-419(1994).
[38] R. L.Berger, L.Divol, S.Dixit, M.Dorr, D. H.Froula, S. H.Glenzer, B. A.Hammel, C.Haynam, J. A.Hittinger, J. P.Holder, O. S.Jones, D. H.Kalantar, O. L.Landen, A. B.Langdon, S.Langer, B. J.MacGowan, A. J.Mackinnon, N.Meezan, E. I.Moses, C.Niemann, C. H.Still, L. J.Suter, R. J.Wallace, E. A.Williams, B. K. F.Young. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 3, 716-719(2007).
[39] R. L.Berger, L.Divol, S. H.Glenzer, R. K.Kirkwood, B. J.MacGowan, J. D.Moody, J. E.Rothenberg, E. A.Williams, P. E.Young. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett., 86, 2810-2813(2001).
[40] I.Barth, N. J.Fisch. Reducing parametric backscattering by polarization rotation. Phys. Plasmas, 23, 102106(2016).
[41] X. F.Chen, Y.Cui, P. Y.Du, W.Feng, S. Z.Fu, Y. Q.Gao, Y. L.Hua, X. G.Huang, L. J.Ji, F. J.Li, X. L.Li, J.Liu, J. N.Liu, W. X.Ma, W. B.Pei, D. X.Rao, C.Shan, H. T.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T. X.Zhang, X. H.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).
[42] L.Hao, B.Li, J. W.Li, J.Qiu, H.Xiong, B.Zhang, Z. Q.Zhong. Effective optical smoothing scheme to suppress laser plasma instabilities by time-dependent polarization rotation via pulse chirping. Opt. Express, 29, 1304-1319(2021).
[43] D. A.Callahan, L.Divol, S.Dixit, M. J.Edwards, S. H.Glenzer, S. W.Haan, D. E.Hinkel, O. L.Landen, J. D.Lindl, B. J.MacGowan, N. B.Meezan, P.Michel, J. D.Salmonson, L. J.Suter, C. A.Thomas, S.Weber, E. A.Williams. Energy transfer between laser beams crossing in ignition hohlraums. Phys. Plasmas, 16, 042702(2009).
[44] [44] In discussions for zero laser wavelength difference, 90° ≥ φs ≥ −90° for θs = 0° or θs = 180° is adopted to denote different SL modes. For θs = 0, α⊥ = arctan(tan φs/sin θh), while for θs = 180°, α⊥ = 180 − arctan(tan φs/sin θh). Thus, for Δλ0 = 0, α⊥ = 0 corresponds to “forward” in-plane scattering (θs = 0 and φs = 0), α⊥ = 180° corresponds to “backward” in-plane scattering (θs = 180° and φs = 0°), and α⊥ = 90° corresponds to scattering with the largest out-of-plane angle (φs = 90°).