Journal of the Chinese Ceramic Society, Volume. 50, Issue 3, 849(2022)
Continuum White Light Generation Driven by Near-infrared Laser: A Short Review
[1] [1] HOU X, ZHOU S, JIA T, et al. White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic[J]. J Alloy Compd, 2011, 509(6): 2793-2796.
[3] [3] LAHOZ F, MART N, CALVILLA J M. Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics[J]. Appl Phys Lett, 2005, 86(5): 051106.
[4] [4] CHAIKA M A, TOMALA R, STREK W. Infrared laser stimulated broadband white emission of transparent Cr:YAG ceramics obtained by solid state reaction sintering[J]. Opt Mater, 2021, 111: 110673.
[5] [5] COEN S, CHAU A H L, LEONHARDT R, et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt Lett, 2001, 26(17): 1356-1358.
[6] [6] WANG J, TANNER P A. Upconversion for white light generation by a single compound[J]. J Am Chem Soc, 2010, 132(3): 947-949.
[8] [8] STREK W, CICHY B, RADOSINSKI L, et al. Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene[J]. Light Sci Appl, 2015, 4: 237.
[9] [9] ROSEMANN NW, EU NER JP, BEYER A, et al. A highly efficient directional molecular white-light emitter driven by a continuous-wave laser diode[J]. Science, 2016, 352(6291): 1301.
[10] [10] WANG J, MING T, JIN Z, et al. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%[J]. Nat Commun, 2014, 5: 5669.
[11] [11] REDMOND S, RAND S C, RUAN X L, et al. Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders[J]. J Appl Phys, 2004, 95(8): 4069-4077.
[12] [12] STREK W, MARCINIAK L, GLUCHOWSKI P, et al. Infrared laser stimulated broadband white emission of Yb3+:YAG nanoceramics[J]. Opt Mater, 2013, 35(11): 2013-2017.
[13] [13] VERMA R K, RAI S B. Continuum emission in Nd3+/Yb3+ co-doped Ca12Al14O33 phosphor: charge transfer state luminescence versus induced optical heating[J]. Chem Phys Lett, 2013, 559: 71-75.
[14] [14] STEFANSKI M, LUKASZEWICZ M, HRENIAK D, STREK W. Broadband laser induced white emission observed from Nd3+ doped Sr2CeO4 nanocrystals[J]. J Lumin, 2017, 192: 243-249.
[15] [15] BILIR G, OZEN G, BETTINELLI M, et al. Broadband visible light emission from nominally undoped and Cr3+ doped garnet nanopowders[J]. IEEE Photonics J, 2014, 6(4): 1-11.
[16] [16] STREK W, MARCINIAK L, HRENIAK D, et al. Anti-stokes bright yellowish emission of NdAlO3 nanocrystals[J]. J Appl Phys, 2012, 111(2): 024305.
[17] [17] SILVA FILHO C I, OLIVEIRA A L, PEREIRA S C F, et al. Bright thermal (blackbody) emission of visible light from LnO2 (Ln = Pr, Tb), photoinduced by a NIR 980 nm laser[J]. Dalton T, 2019, 48(8): 2574-2581.
[18] [18] CHEN W, SHI Y, CHEN Z, et al. Near-infrared emission and photon energy upconversion of two-dimensional copper silicates[J]. J Phys Chem C, 2015, 119(35): 20571-20577.
[19] [19] BILIR G, OZEN G, BETTINELLI M, et al. Broadband visible light emission from nominally undoped and Cr3+ doped garnet nanopowders[J]. IEEE Photonics J, 2014, 6(4): 1-11.
[20] [20] TABANLI S, YILMAZ H C, BILIR G, et al. Broadband white light emission from doped and undoped insulators[J]. ECS J Solid State Sc, 2017, 7(1): R3199-R3210.
[21] [21] CESARIA M, COLLINS J, DIBARTOLO B. On the efficient warm white-light emission from nano-sized Y2O3[J]. J Lumin, 2016, 169: 574-580.
[22] [22] ERDEM M, ERYUREK G, DI BARTOLO B. White light emission from sol-gel derived γ-Y2Si2O7 nanoparticles[J]. J Alloy Compd, 2015, 639: 483-487.
[23] [23] XU W, MIN X, CHEN X, et al. Ag-SiO2-Er2O3 nanocomposites: highly effective upconversion luminescence at high power excitation and high temperature[J]. Sci Rep, 2014, 4: 5087.
[24] [24] LIU T, BAI X, MIAO C, et al. Yb2O3/Au upconversion nanocomposites with broad-band excitation for solar cells[J]. J Phys Chem C, 2014, 118(6): 3258-3265.
[25] [25] CHEN X, XU W, ZHU Y, et al. Nd2O3/Au nanocomposites: upconversion broadband emission and enhancement under near-infrared light excitation[J]. J Mater Chem C, 2014, 2(29): 5857-5863.
[26] [26] DEBASU M L, ANANIAS D, PASTORIZA-SANTOS I, et al. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation[J]. Adv Mater, 2013, 25(35): 4868-4874.
[27] [27] LIM ZH, LEE A, ZHU Y, et al. Sustained laser induced incandescence in carbon nanotubes for rapid localized heating[J]. Appl Phys Lett, 2009, 94(7): 073106.
[28] [28] LUI CH, MAK KF, SHAN J, et al. Ultrafast photoluminescence from graphene[J]. Phys Rev Lett, 2010, 105(12): 127404.
[29] [29] DORNSIEPEN E, DOBENER F, CHATTERJEE S, et al. Controlling the white-light generation of [(RSn)4E6]: effects of substituent and chalcogenide variation[J]. Angew Chem Int Edit, 2019, 58(0): 17041-17046.
[30] [30] ROSEMANN N W, EUSSNER J P, DORNSIEPEN E, et al. Organotetrel chalcogenide clusters: between strong second-harmonic and white-light continuum generation[J]. J Am Chem Soc, 2016, 138(50): 16224-16227.
[31] [31] ROSEMANN N W, LOCKE H, SCHREINER P R, et al. White-light generation through nonlinear optical response of 1,3,5,7- tetraphenyladamantane: amorphous versus crystalline states[J]. Adv Opt Mater, 2018, 6(12): 1701162.
[32] [32] YE H, BOGDANOV V, LIU S, et al. Bright photon upconversion on composite organic lanthanide molecules through localized thermal radiation[J]. J Phys Chem Lett, 2017, 8(23): 5695-5699.
[33] [33] GONZALEZ F, KHADKA R, LOPEZ-JUAREZ R, et al. Emission of white-light in cubic Y4Zr3O12:Yb3+ induced by a continuous infrared laser[J]. J Lumin, 2018, 198: 320-326.
[34] [34] STREK W, TOMALA R, MARCINIAK L, et al. Broadband anti-Stokes white emission of Sr2CeO4 nanocrystals induced by laser irradiation[J]. PCCP, 2016, 18(40): 27921-27927.
[35] [35] STEFANSKI M, HRENIAK D, STREK W. Broadband white emission from Yb3+ doped Sr2CeO4 nanocrystals[J]. Opt Mater, 2017, 65: 95-98.
[36] [36] SONI A K, MATHUR S, SINGH B P. Host-sensitized continuum-broad-band white-light emitting Yb2O3:Er3+ phosphor under CW-NIR Light absorption[J]. CHEMISTRYSELECT, 2019, 4(12): 3408-3415.
[37] [37] SINGH A K, SINGH S, KUMAR D, et al. Light-into-heat conversion in La2O3:Er3+-Yb3+ phosphor: an incandescent emission[J]. Opt Lett, 2012, 37(5): 776-778.
[38] [38] WANG J, HUA H J, TANNER P A. Luminous and tunable white-light upconversion for YAG (Yb3Al5O12) and (Yb,Y)2O3 nanopowders[J]. Opt Lett, 2010, 35(23): 3922-3924.
[39] [39] MIAO C, LIU T, ZHU Y, et al. Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells[J]. Opt Lett, 2013, 38(17): 3340-3343.
[41] [41] ZHU Y, CUI S, LIU M, et al. Observation of upconversion white light and ultrabroad infrared emission in YbAG:Ln3+ (Ln = Nd, Sm, Tb, Er) [J]. Appl Phys Express, 2015, 8(7): 072602.
[42] [42] ERYUREK G, CINKAYA H, ERDEM M, et al. Blue cooperative upconversion and white light emission from Y2Si2O7:Yb3+ nanopowders due to 975-nm infrared excitation. J. Nanophotonics. 2016, 10(2): 026022.
[43] [43] CINKAYA H, ERYUREK G, DI BARTOLO B. The anomalous luminescent behaviors of the Nd3+/Yb3+ co-doped yttrium silicate at different physical conditions[J]. Laser Phys, 2019, 29(6): 065701.
[44] [44] ERDEM M, SITT B. Up conversion based white light emission from sol-gel derived α-Y2Si2O7 nanoparticles activated with Yb3+, Er3+ ions [J]. Opt Mater, 2015, 46: 260-264.
[45] [45] CINKAYA H, ERYUREK G, BILIR G, et al. Effect of pressure and temperature on the white light produced by Ytterbium (III) doped and undoped Yttrium Silicate nanopowders excited by a laser diode[J]. J Lumin, 2017, 181: 321-326.
[46] [46] ERDEM M, ERYUREK G, DIBARTOLO B. Change of spectral output with pressure and white light generation in nanoscale Yb3+:Y2Si2O7[J]. Opt Mater, 2015, 49: 90-93.
[47] [47] ERDEM M, TABANLI S, ERYUREK G, et al. Crystalline phase effect on the up-conversion processes and white emission of Yb3+/Er3+/Tm3+:Y2Si2O7 nanocrystals[J]. Dalton T, 2019, 48(19): 6464-6472.
[48] [48] TOMALA R, HRENIAK D, STREK W. Laser induced broadband white emission of Y2Si2O7 nanocrystals[J]. J Rare Earth, 2019, 37(11): 1196-1199.
[49] [49] TOMALA R, STREK W. Emission properties of Nd3+: Y2Si2O7 nanocrystals under high excitation power density[J]. Opt Mater, 2019, 96: 109257.
[50] [50] CINKAYA H, ERYUREK G, BILIR G, et al. Spectral characterization and white light generation by yttrium silicate nanopowders undoped and doped with Ytterbium(III) at different concentrations when excited by a laser diode at 975 nm[J]. Opt Mater, 2017, 63: 167-172.
[51] [51] TOMALA R, GERASYMCHUK Y, HRENIAK D, et al. The influence of excitation density on laser induced white lighting of wide-band-gap semiconductor ZnSe:Yb polycrystallite ceramics[J]. ECS J Solid State Sc, 2020, 9(1): 016020.
[52] [52] ZHU S, WANG C, LI Z, et al. High-efficiency broadband anti-Stokes emission from Yb3+-doped bulk crystals[J]. Opt Lett, 2016, 41(10): 2141-2144.
[53] [53] BILIR G, BARTOLO B D. Production of bright, wideband white light from Y2O3 nano-powders induced by laser diode emission[J]. Opt Mater, 2014, 36(8): 1357-1360.
[54] [54] BILIR G, ERYREK G. The role played by dopant ions for the production of broadband white light emission from metal oxide nano-powders under laser diode excitation[J]. Ceram Int, 2016, 42(5): 6065-6071.
[55] [55] TOMALA R, HRENIAK D, STREK W. Influence concentration of Nd3+ ion on the laser induced white emission of Y2Si2O7:Nd3+[J]. Opt Mater, 2017, 74: 135-138.
[56] [56] CHEN X, XU W, ZHU Y, et al. Nd2O3/Au nanocomposites: upconversion broadband emission and enhancement under near-infrared light excitation[J]. J Mater Chem C, 2014, 2(29): 5857-5863.
[57] [57] LIM ZH, LEE A, LIM K Y Y, et al. Systematic investigation of sustained laser-induced incandescence in carbon nanotubes[J]. J Appl Phys, 2010, 107(6): 064319.
[58] [58] ZENG H, YANG C, DAI J, et al. Light-induced incandescence of single-walled carbon nanotubes[J]. J Phys Chem C, 2008, 112(11): 4172-4175.
[59] [59] LIU W T, WU S W, SCHUCK P J, et al. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation[J]. Phys Rev B, 2010, 82(8): 081408.
[60] [60] HUANG D, JIANG T, ZHANG Y, et al. Gate switching of ultrafast photoluminescence in graphene[J]. Nano Lett, 2018, 18(12): 7985-7990.
[61] [61] KIM YD, GAO Y, SHIUE RJ, et al. Ultrafast graphene light emitters [J]. Nano Lett, 2018, 18(2): 934-940.
[62] [62] CHEN C F, PARK C H, BOUDOURIS B W, et al. Controlling inelastic light scattering quantum pathways in graphene[J]. Nature, 2011, 471: 617.
[63] [63] DORNSIEPEN E, DOBENER F, MENGEL N, et al. White-light generation upon in-situ amorphization of single crystals of [{(Me3P)3AuSn}(PhSn)3S6] and [{(Et3P)3AgSn}(PhSn)3S6][J]. Adv Opt Mater, 2019, 7(12): 1801793.
[64] [64] ZHOU D, LIU D, JIN J, et al. Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells[J]. J Mater Chem A, 2017, 5(32): 16559-16567.
[65] [65] STREK W, MARCINIAK L, BEDNARKIEWICZ A, et al. White emission of lithium ytterbium tetraphosphate nanocrystals[J]. Opt Express, 2011, 19(15): 14083-14092.
[66] [66] STREK W, TOMALA R, LUKASZEWICZ M, et al. Laser induced white lighting of graphene foam[J]. Sci Rep, 2017, 7: 41281.
[67] [67] STREK W, BEDNARKIEWICZ A, LUKOWIAK A, et al. White emission of lithium ytterbium tetraphosphate nanocrystals[J]. Opt Express, 2011, 19(15): 14083.
[68] [68] WU J, SUN X, XIAO W, et al. Understanding near infrared laser driven continuum white light emission by graphene and its mixture with an oxide phosphor[J]. Adv Opt Mater, 2019, 0(0): 1900899.
[69] [69] WU J, XU C, QIU J, et al. Conversion of constant-wave near-infrared laser to continuum white light by Yb-doped oxides[J]. J Mater Chem C, 2018, 6(28): 7520-7526.
[70] [70] STEFANSKI M, LUKASZEWICZ M, HRENIAK D, et al. Laser induced white emission generated by infrared excitation from Eu3+:Sr2CeO4 nanocrystals[J]. J Chem Phys, 2017, 146(10): 104705.
[71] [71] STREK W, TOMALA R, LUKASZEWICZ M. Laser induced white lighting of tungsten filament[J]. Opt Mater, 2018, 78: 335-338.
[73] [73] CHEN Z, JIA H, SHARAFUDEEN K, et al. Up-conversion luminescence from single vanadate through blackbody radiation harvesting broadband near-infrared photons for photovoltaic cells[J]. J Alloy Compd, 2016, 663: 204-210.
[74] [74] MARCINIAK L, STREK W, HRENIAK D, et al. Temperature of broadband anti-Stokes white emission in LiYbP4O12: Er nanocrystals [J]. Appl Phys Lett, 2014, 105(17): 173113.
[75] [75] MARCINIAK L, STREK W, BEDNARKIEWICZ A, et al. Upconversion emission of LiNdP4O12 and KNdP4O12 crystals[J]. J Lumin, 2013, 133: 57-60.
[76] [76] OLEJNICZAK A, TOMALA R, CICHY B, et al. Laser-driven proliferation of sp2-sp3 changes during anti-Stokes white light emission of μ-diamonds[J]. Carbon, 2019, 146: 438-446.
[77] [77] MARCINIAK L, TOMALA R, STEFANSKI M, et al. Laser induced broad band anti-Stokes white emission from LiYbF4 nanocrystals[J]. J Rare Earth, 2016, 34(3): 227-234.
[78] [78] CINKAYA H, ERYUREK G, DIBARTOLO B. White light emission based on both upconversion and thermal processes from Nd3+ doped yttrium silicate[J]. Ceram Int, 2018, 44(4): 3541-3547.
[79] [79] ZHU Y, HAI T, JI X, et al. Highly effective upconversion broad-band luminescence and enhancement in Dy2O3/Au and Sm2O3/Au composites[J]. J Lumin, 2017, 181: 352-359.
[80] [80] ZHU Y, XU W, LI C, et al. Broad white light and infrared emission bands in YVO4:Yb3+,Ln3+ (Ln3+= Er3+, Tm3+, or Ho3+)[J]. Appl Phys Express, 2012, 5(9): 092701-092701-092703.
[81] [81] MIYASAKA H. Control of charge transfer in donor/acceptor metal-organic frameworks[J]. Accounts Chem Res, 2013, 46(2): 248-257.
[82] [82] COROPCEANU V, CHEN X K, WANG T, et al. Charge-transfer electronic states in organic solar cells[J]. Nat Rev Mater, 2019, 4(11): 689-707.
[83] [83] LPEZPACHECO G, LPEZJU R R, VILLAFUERTE-CASTREJ N M E, et al. Luminescence properties of Yb3+-doped SrTiO3: the significance of the oxygen-titanium charge transfer state on photon downshifting [J]. Dalton T, 2019, 48(31): 11889-11896.
[84] [84] FERHI M, HORCHANI-NAIFER K, HRAIECH S, et al. Near infrared and charge transfer luminescence of trivalent ytterbium in KLa(PO3)4 powders[J]. Opt Commun, 2012, 285(12): 2874-2878.
[85] [85] TAO L, XU W, ZHU Y, et al. Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals[J]. J Mater Chem C, 2014, 2(21): 4186.
[86] [86] XU S, ZHU Y, XU W, et al. Observation of ultrabroad infrared emission bands in Ee2O3, Pr2O3, Nd2O3 and Sm2O3 polycrystals[J]. Appl Phys Express, 2012, 5(10): 102701.
[87] [87] TODA Y, ISHIYAMA S, KHUTORYAN E, et al. Rattling of oxygen ions in a sub-nanometer-sized cage converts terahertz radiation to visible light[J]. ACS nano, 2017, 11(12): 12358-12364.
[89] [89] DEBASU M L, ANANIAS D, PASTORIZA-SANTOS I, et al. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation[J]. Adv Mater, 2013, 25(35): 4868-4874.
[90] [90] LI S, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J]. Laser Photonics Rev, 2018, 12(12): 1800173.
[91] [91] DATAS A, MART A. Thermophotovoltaic energy in space applications: Review and future potential[J]. Sol Energ Mater Sol C, 2017, 161: 285-296.
[92] [92] TERVO E, BAGHERISERESHKI E, ZHANG Z. Near-field radiative thermoelectric energy converters: a review[J]. Front Energy, 2018, 12(1): 5-21.
[93] [93] PFIESTER N A, VANDERVELDE T E. Selective emitters for thermophotovoltaic applications[J]. Phys Status Solidi A, 2017, 214(1): 1600410.
[94] [94] LUO C, NARAYANASWAMY A, CHEN G, et al. Thermal radiation from photonic crystals: a direct calculation[J]. Phys Rev Lett, 2004, 93(21): 213905
[95] [95] JIA H, PING C, XU C, et al. Fabrication of the (Y2O3:Yb-Er)/Bi2S3 composite film for neari-nfrared photoresponse[J]. J Mater Chem A, 2015, 3(11): 5917-5922.
[96] [96] JIA H, LIU Z, LIAO L, et al. Upconversion luminescence from Ln3+(Ho3+, Pr3+) ion-doped BaCl2 particles via NIR light of sun excitation[J]. J Phys Chem C, 2018, 122(17): 9606-9610.
[97] [97] CHEN Z, WU G, JIA H, et al. Improved up-conversion luminescence from Er3+: LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation[J]. J Phys Chem C, 2015, 119(42): 24056-24061.
[98] [98] JIA H, ZHENG S H, XU C, et al. Near-infrared light-induced photocurrent from a (NaYF4:Yb-Tm)/(Cu2O) composite thin film[J]. Adv Energy Mater, 2015, 5(2): 1401041.
[99] [99] MANSMANN R, SIPKENS T A, MENSER J, et al. Detector calibration and measurement issues in multi-color time-resolved laser-induced incandescence[J]. Appl Phys B, 2019, 125(7): 126.
[100] [100] HUMPHRIES G S, ROY R, BLACK J D, et al. In situ photoacoustic measurement of soot profiles in laminar flames using a high-repetition-rate pulsed fibre laser[J]. Appl Phys B, 2019, 125(4): 60.
[101] [101] SIPKENS T A, MENSER J, MANSMANN R, et al. Investigating temporal variation in the apparent volume fraction measured by time-resolved laser-induced incandescence[J]. Appl Phys B, 2019, 125(8): 140.
[102] [102] GEIGLE K P, ZERBS J, HADEF R, et al. Laser-induced incandescence for soot measurements in an aero-engine combustor at pressures up to 20 bar[J]. Appl Phys B, 2019, 125(6): 96.
[103] [103] WILLEMS R C, BAKKER P C, DAM N J. Laser-induced incandescence versus photo-acoustics: implications for qualitative soot size diagnostics[J]. Appl Phys B, 2019, 125(7): 138.
[104] [104] KRUSE S, MEDWELL P R, BEECKMANN J, et al. The significance of beam steering on laser-induced incandescence measurements in laminar counterflow flames[J]. Appl Phys B, 2018, 124(11): 212.
Get Citation
Copy Citation Text
WU Jianhong, LIU Xiaofeng, CUI Yanxia, QIU Jianrong. Continuum White Light Generation Driven by Near-infrared Laser: A Short Review[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 849
Category:
Received: May. 4, 2021
Accepted: --
Published Online: Nov. 11, 2022
The Author Email: Jianhong WU (wujianhong@tyut.edu.cn)