Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 2, 73(2025)
Research progress of terahertz parametric radiation sources Research progress of terahertz parametric radiation sources
[1] [1] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928. doi: 10.1109/22.989974.
[2] [2] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3.
[3] [3] KAWASE K, SHIKATA J I, ITO H. Terahertz wave parametric source[J]. Journal of Physics D-Applied Physics, 2002, 35(3): R1-R14. doi: 10.1088/0022-3727/35/3/201.
[4] [4] MURATE K, KAWASE K. Perspective: terahertz wave parametric generator and its applications[J]. Journal of Applied Physics, 2018, 124(16): 160901. doi: 10.1063/1.5050079.
[5] [5] LEE A J, SPENCE D J, PASK H M. Terahertz sources based on stimulated polariton scattering[J]. Progress in Quantum Electronics, 2020(71): 100254-1-23. doi: 10.1016/j.pquantelec.2020.100254.
[6] [6] ZHONG Kai, SHI Wei, XU Degang, et al. Optically pumped terahertz sources[J]. Science China Technological Sciences, 2017, 60(12): 1801-1818. doi: 10.1007/s11431-017-9057-3.
[8] [8] SUSSMEN S S. Tunable light scattering from transverse optical modes in lithium niobate[D]. California, USA: Stanford University, 1970.
[9] [9] FURUKAWA Y, SATO M, NITANDA F, et al. Growth and characterization of MgO-doped LiNbO3 for electro-optic devices[J]. Journal of Crystal Growth, 1990, 99(4): 832-836. doi: 10.1016/S0022-0248(08)80035-8.
[10] [10] NAKAMURA M, HIGUCHI S, TAKEKAWA S, et al. Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3[J]. Japanese Journal of Applied Physics, 2002(41): 1A. doi: 10.1143/JJAP.41. L49.
[11] [11] SHIKATA J, KAWASE K, KARINO K, et al. Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(4): 653-661. doi: 10.1109/22.841956.
[12] [12] KEN-ICHI K, JUN-ICHI S, KODO K, et al. Terahertz-wave parametric generation characteristics of MgO: LiNbO3[J]. Electronics and Communications in Japan (Part II: Electronics), 2002, 85(4): 22-29. doi: 10.1002/ecjb.1101.
[13] [13] MURATE L, HAYASHI S, KAWASE K. Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz[J]. Applied Physics Express, 2016, 9(8): 082401. doi: 10.7567/APEX.9.082401.
[15] [15] TANG Longhuang, XU Degang, WANG Yuye, et al. Injection pulse-seeded terahertz-wave parametric generator with gain enhancement in wide frequency range[J]. Optics Express, 2019, 27(16): 22808-22818. doi: 10.1364/OE.27.022808.
[16] [16] TANG Longhuang, XU Degang, WANG Yuye, et al. Efficient ring-cavity terahertz parametric oscillator with pump recycling technique[J]. IEEE Photonics Journal, 2019, 11(1): 1-9. doi: 10.1109/JPHOT.2019.2893188.
[17] [17] XU Liwen. Raman scattering of polaritons in a KTiOPO4 crystal[J]. Chinese Physics Letters, 1990, 7(10): 469.
[18] [18] WANG Weitao, CONG Zhenhua, CHEN Xiaohan, et al. Terahertz parametric oscillator based on KTiOPO, crystal[J]. Optics Letters, 2014, 39(13): 3706-3709. doi: 10.1364/OL.39.003706.
[19] [19] WANG Weitao, CONG Zhenhua, LIU Zhaojun, et al. THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal[J]. Optics Express, 2014, 22(14): 17092-17098. doi: 10.1364/OE.22.017092.
[20] [20] ORTEGA T A, PASK H M, SPENCE D J, et al. Stimulated polariton scattering in an intracavity KTiOPO4 crystal generating frequency-tunable THz output[J]. Optics Express, 2016, 24(10): 10254-10264. doi: 10.1364/OE.24.010254.
[21] [21] CHEN Kai, TANG Longhuang, XU Degang, et al. Continuously tunable and energy-enhanced injection pulse-seeded terahertz parametric generator based on KTP crystal[J]. ACS Photonics, 2021, 8(11): 3141-3149. doi: 10.1021/acsphotonics.1c00284.
[22] [22] YARBOROUGH J, SUSSMAN S, EFFICIENT P H. Efficient, tunable optical emission from LiNbO3 without a resonator[J]. Applied Physics Letters, 1969, 15(3): 102-105. doi: 10.1063/1.1652910.
[23] [23] KAWASE K, SATO M, TANIUCHI T, et al. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler[J]. Applied Physics Letters, 1996, 68(18): 2483-2485.
[24] [24] KAWASE K, SATO M, NAKAMURA K, et al. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition[J]. Applied Physics Letters, 1997, 71(6): 753-755. doi: 10.1063/1.119635.
[25] [25] KAWASE K, SHIKATA J, MINAMIDE H, et al. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator[J]. Applied Optics, 2001, 40(9): 1423-1426. doi: 10.1364/ao.40.001423.
[26] [26] IKARI T, ZHANG X B, MINAMIDE H, et al. THz-wave parametric oscillator with a surface-emitted configuration[J]. Optics Express, 2006, 14(4): 1604-1610. doi: 10.1364/oe.14.001604.
[27] [27] ORTEGA T A, PASK H M, SPENCE D J, et al. THz polariton laser using an intracavity Mg: LiNbO3 crystal with protective Teflon coating[J]. Optics Express, 2017, 25(4): 3991-3999. doi: 10.1364/OE.25.003991.
[28] [28] WANG Weitao, ZHANG Xingyu, WANG Qingpu, et al. Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO: LiNbO₃ crystal[J]. Optics Letters, 2014, 39(4): 754-757. doi: 10.1364/OL.39.000754.
[29] [29] IMAI K, KAWASE K, ITO H. A frequency-agile terahertz-wave parametric oscillator[J]. Optics Express, 2001, 8(13): 699-704. doi: 10.1364/oe.8.000699.
[30] [30] MINAMIDE H, IKARI T, ITO H. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration[J]. Review of Scientific Instruments, 2009, 80(12): 123104. doi: 10.1063/1.3271039.
[31] [31] SUN Bo, LI Sanxing, LIU Jinsong, et al. Terahertz-wave parametric oscillator with a misalignment-resistant tuning cavity[J]. Optics Letters, 2011, 36(10): 1845-1847. doi: 10.1364/OL.36.001845.
[32] [32] YANG Zhen, WANG Yuye, XU Degang, et al. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration[J]. Optics Letters, 2016, 41(10): 2262-2265. doi: 10.1364/OL.41.002262.
[33] [33] WU D H, IKARI T. Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam[J]. Applied Physics Letters, 2009, 95(14): 141105-1-3. doi: 10.1063/1.3240871.
[34] [34] IMAI K, KAWASE K, SHIKATA J, et al. Injection-seeded terahertz-wave parametric oscillator[J]. Applied Physics Letters, 2001, 78(8): 1026-1028. doi: 10.1063/1.1350420
[35] [35] KAWASE K, SHIKATA J I, IMAI K, et al. Transform-limited, narrow-linewidth, terahertz-wave parametric generator[J]. Applied Physics Letters, 2001, 78(19): 2819-2821. doi: 10.1063/1.1370988.
[36] [36] IMAI K, KAWASE K, MINAMIDE H, et al. Achromatically injection-seeded terahertz-wave parametric generator[J]. Optics Letters, 2002, 27(24): 2173-2175. doi: 10.1364/ol.27.002173.
[37] [37] GUO Ruixiang, AKIYAMA K, MINAMIDE H, et al. All-solid-state, narrow linewidth, wavelength-agile terahertz-wave generator[J]. Applied Physics Letters, 2006, 88(9): 091120. doi: 10.1063/1.2181196.
[38] [38] TANG Guanqi, CONG Zhehua, QIN Zengguang, et al. Energy scaling of terahertz-wave parametric sources[J]. Optics Express, 2015, 23(4): 4144-4152. doi: 10.1364/OE.23.004144.
[39] [39] HAYASHI S, MINAMIDE H, IKARI T, et al. Output power enhancement of a palmtop terahertz-wave parametric generator[J]. Applied Optics, 2007, 46(1): 117-123. doi: 10.1364/ao.46.000117.
[40] [40] GAO Feilong, ZHANG Xingyu, CONG Zhenhua, et al. Enhancement of intracavity-pumped terahertz parametric oscillator power by adopting diode-side pumped configuration based on KTiOPO4 crystal[J]. Crystals, 2019, 9(12): 666.
[41] [41] EDWARDS T, WALSH D, SPURR M, et al. Compact source of continuously and widely-tunable terahertz radiation[J]. Optics Express, 2006, 14(4): 1582-1589. doi: 10.1364/oe.14.001582.
[42] [42] STOTHARD D, EDWARDS T, WALSH D, et al. Line-narrowed, compact, and coherent source of widely tunable terahertz radiation[J]. Applied Physics Letters, 2008, 92(14): 3-5. doi: 10.1063/1.2907489.
[43] [43] WALSH D, STOTHARD D, EDWARDS T, et al. Injection-seeded intracavity terahertz optical parametric oscillator[J]. Journal of the Optical Society of America B, 2009, 26(6): 1196.
[44] [44] LEE A J, SPENCE D J, PASK H M. Tunable THz polariton laser based on 1 342 nm wavelength for enhanced terahertz wave extraction[J]. Optics Letters, 2017, 42(14): 2691-2694. doi: 10.1364/OL.42.002691.
[45] [45] GAO Feilong, ZHANG Xingyu, CONG Zhenhua, et al. High average power diode-side-pumped intracavity terahertz parametric source based on stimulated polariton scattering in RbTiOPO4 crystal[J]. IEEE Photonics Journal, 2020, 12(2): 1-9. doi: 10.1109/JPHOT.2020.2981527.
[46] [46] LEE A H Y, PASK H. Frequency-tunable THz source based on stimulated polariton scattering in Mg: LiNbO3[J]. IEEE Journal of Quantum Electronics, 2013, 49(3): 357-364.
[47] [47] LEE A, PASK H. Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering[J]. Optics Letters, 2014, 39(3): 442-445. doi: 10.1364/ol.39.000442.
[48] [48] ORTEGA T A, PASK H M, SPENCE D J, et al. Tunable 3~6 THz polariton laser exceeding 0.1 mW average output power based on crystalline RbTiOPO4[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-6. doi: 10.1109/JSTQE.2018.2810380.
[49] [49] ZHENG Y M, LEE ANDREW, SPENCE D, et al. Linewidth-narrowing of a continuous wave terahertz polariton laser using an intracavity etalon[J]. Optics Letters, 2020, 45(1): 157-160. doi: 10.1364/OL.45.000157.
[50] [50] KITZLER O, JOSE A, LEE A, et al. Cavity design with single-mirror THz frequency tuning for polariton lasers[J]. Optics Letters, 2022, 47(14): 3391-3394. doi: 10.1364/OL.465375.
[51] [51] NAWATA K, HAYASHI S, ISHIZUKI H, et al. Effective terahertz wave parametric generation depending on the pump pulse width using a LiNbO3 crystal[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5): 617-620. doi: 10.1109/TTHZ.2017.2725479.
[52] [52] HAYASHI S, SHIBUYA T, SAKAI H, et al. Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd: YAG laser[J]. Applied Optics, 2009, 48(15): 2899-2902. doi: 10.1364/ao.48.002899.
[53] [53] HAYASHI S, NAWATA K, SAKAI H, et al. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd: YAG laser[J]. Optics Express, 2012, 20(3): 2881-2886. doi: 10.1364/OE.20.002881.
[54] [54] MINAMIDE H, HAYASHI S, NAWATA K, et al. Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature[J]. Journal of Infrared, Millimeter and Terahertz Waves, 2014, 35(1): 25-37. doi: 10.1007/s10762-013-0041-0.
[55] [55] MORIGUCHI Y, TOKIZANE Y, TAKIDA Y, et al. High-average and high-peak output-power terahertz-wave generation by optical parametric down-conversion in MgO: LiNbO3[J]. Applied Physics Letters, 2018, 113(12): 121101-121103.
[56] [56] YAN Chao, XU Degang, WANG Yuye, et al. Enhanced terahertz wave generation via stokes wave recycling in non-synchronously picosecond pulse pumped terahertz source[J]. IEEE Photonics Journal, 2019, 11(5): 1-8. doi: 10.1109/JPHOT.2019.2934488.
[57] [57] LI Weifan, QI Feng, LIU Pengxiang, et al. Cascaded effect in a high-peak-power terahertz-wave parametric generator[J]. Optics Letters, 2022, 47(1): 178-181. doi: 10.1364/OL.441786.
[58] [58] TAKIDA Y, MAEDA S, OHIRA T, et al. Noncascading THz-wave parametric oscillator synchronously pumped by mode-locked picosecond Ti: sapphire laser in doubly-resonant external cavity[J]. Optics Communications, 2011, 284(19): 4663-4666. doi: 10.1016/j.optcom.2011.04.072.
[59] [59] TAKIDA Y, OHIRA T, TADOKORO Y, et al. Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500307. doi: 10.1109/JSTQE.2012.2206801.
[60] [60] WARRIER A M, LI R, LIN J P, et al. Tunable terahertz generation in the picosecond regime from the stimulated polariton scattering in a LiNbO3 crystal[J]. Optics Letters, 2016, 41(18): 4409-4412. doi: 10.1364/OL.41.004409.
[61] [61] YAN Chao, WANG Yuye, XU Degang, et al. Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator[J]. Applied Physics Letters, 2016(108): 011107.
[62] [62] TANG Longhuang, XU Degang, WANG Yuye, et al. Tunable dual-color terahertz wave parametric oscillator based on KTP crystal[J]. Optics Letters, 2019, 44(23): 5675-5678. doi: 10.1364/OL.44.005675.
[63] [63] NISHIDA M, NOTAKE T, TAKIDA Y, et al. High-repetition-rate injection-seeded terahertz-wave parametric generation pumped by a 1.5 m sub-nanosecond laser[J]. Applied Physics Letters, 2024, 124(12): 121105. doi: 10.1063/5.0192587.
[64] [64] MOHARA M, SHIMURA K, AIKO K, et al. Terahertz spectroscopy using an injection-seeded terahertz parametric generator for quantitative analysis and inspection of over-the-counter medicine tablets[C]//Proceedings of Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications. San Francisco, California, United States: SPIE, 2018: 1053121. doi: 10.1117/12.2288029.
[65] [65] SASAKI T, SAKAMOTO T, OTSUKA M. Detection of impurities in organic crystals by high-accuracy terahertz absorption spectroscopy[J]. Analytical Chemistry, 2018, 90(3): 1677-1682. doi: 10.1021/acs.analchem.7b03220.
Get Citation
Copy Citation Text
ZHANG Jingxi, WANG Yuye, XU Bingfeng, MA Hongru, LIU Zikun, XU Degang, YAO Jianquan. Research progress of terahertz parametric radiation sources Research progress of terahertz parametric radiation sources[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(2): 73
Category:
Received: Jun. 25, 2024
Accepted: Mar. 13, 2025
Published Online: Mar. 13, 2025
The Author Email: Yuye WANG (yuyewang@tju.edu.cn)