Acta Optica Sinica, Volume. 31, Issue 9, 900114(2011)

Progress in Immunophotonics

Luo Qingming1,2、* and Zhang Zhihong1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(60)

    [1] [1] So much more to know…[J]. Science, 2005, 309(5731): 78~102

    [2] [2] J. L. Coombes, E. A Robey. Dynamic imaging of host-pathogen interactions in vivo[J]. Nature Rev. Immunol., 2010, 10(5): 353~364

    [3] [3] T. Zal, G. Chodaczek. Intravital imaging of anti-tumor immune response and the tumor microenvironment[J]. Semin. Immunopathol., 2010, 32(3): 305~317

    [4] [4] Z. Fan, J. A. Spencer, Y. Lu et al.. In vivo tracking of ′color-coded′ effector, natural and induced regulatory T cells in the allograft response[J]. Nature Med., 2010, 16(6): 718~722

    [5] [5] R. N. Germain, M. J. Miller, M. L. Dustin et al.. Dynamic imaging of the immune system: progress, pitfalls and promise[J]. Nature Rev. Immunol., 2006, 6(7): 497~507

    [6] [6] M. F. Krummel. Illuminating emergent activity in the immune system by real-time imaging[J]. Nature Immunol., 2010, 11(7): 554~557

    [7] [7] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73~76

    [8] [8] R. Weissleder, M. J. Pittet. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187): 580~589

    [9] [9] B. A. Wilt, L. D. Burns, E. T. Wei Ho et al.. Advances in light microscopy for neuroscience[J]. Annu. Rev. Neurosci., 2009, 32: 435~506

    [10] [10] M. J. Miller, S. H. Wei, I. Parker et al.. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node[J]. Science, 2002, 296(5574): 1869~1873

    [11] [11] M. D. Cahalan, I. Parker, S. H. Wei et al.. Two-photon tissue imaging: seeing the immune system in a fresh light[J]. Nature Rev. Immunol., 2002, 2(11): 872~880

    [12] [12] F. Helmchen, W. Denk. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12): 932~940

    [13] [13] J. N. Kerr, W. Denk. Imaging in vivo: watching the brain in action[J]. Nature Rev. Neurosci., 2008, 9(3): 195~205

    [14] [14] D. Li, X. Lü, S. Zeng et al.. Beam spot size evolution of Gaussian femtosecond pulses after angular dispersion[J]. Opt. Lett., 2008, 33(2): 128~130

    [15] [15] S. Zeng, X. Lü, C. Zhan et al.. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism[J]. Opt. Lett., 2006, 31(8): 1091~1093

    [16] [16] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photon., 2009, 3(9): 503~509

    [17] [17] X. Wang, Y. Pang, G. Ku et al.. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnol., 2003, 21(7): 803~806

    [18] [18] H. F. Zhang, K. Maslov, G. Stoica et al.. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnol., 2006, 24(7): 848~851

    [19] [19] K. H. Song, E. W. Stein, J. A. Margenthaler et al.. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model[J]. J. Biomed. Opt., 2008, 13(5): 054033

    [20] [20] K. Maslov, H. F. Zhang, S. Hu et al.. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Opt. Lett., 2008, 33(9): 929~931

    [21] [21] C. Zhang, K. Maslov, L. V. Wang. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Opt. Lett., 2010, 35(19): 3195~3197

    [22] [22] S. Yang, D. Xing, Q. Zhou et al.. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography[J]. Med. Phys., 2007, 34(8): 3294~3301

    [23] [23] C. Kim, C. Favazza, L. V. Wang. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths[J]. Chem. Rev., 2010, 110(5): 2756~2782

    [24] [24] V. Ntziachristos, D. Razansky. Molecular imaging by means of multispectral optoacoustic tomography (MSOT)[J]. Chem. Rev., 2010, 110(5): 2783~2794

    [25] [25] Chu Jun, Shi Hua, Yang Jie et al.. Optical visualization of molecular and cellular events: to decode 2008 Nobel Prize in chemistry[J]. Progress in Biochemistry and Biophysics, 2008, 35(10): 1104~1111

    [26] [26] M. Pawlicki, H. A. Collins, R. G. Denning et al.. Two-photon absorption and the design of two-photon dyes[J]. Angew. Chem. Int. Ed. Engl., 2009, 48(18): 3244~3266

    [27] [27] G. S. He, L. S. Tan, Q. Zheng et al.. Multiphoton absorbing materials: molecular designs, characterizations, and applications[J]. Chem. Rev., 2008, 108(4): 1245~1330

    [28] [28] H. M. Kim, B. R. Cho. Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues[J]. Acc. Chem. Res., 2009, 42(7): 863~872

    [29] [29] M. Drobizhev, N. S. Makarov, S. E. Tillo et al.. Two-photon absorption properties of fluorescent proteins[J]. Nature Methods., 2011, 8(5): 393~399

    [30] [30] D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh et al.. Bright far-red fluorescent protein for whole-body imaging[J]. Nature Methods, 2007, 4(9): 741~746

    [31] [31] J. Chu, Z. Zhang, Y. Zheng et al.. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions[J]. Biosens. Bioelectron., 2009, 25(1): 234~239

    [32] [32] X. Shu, A. Royant, M. Z. Lin et al.. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome[J]. Science, 2009, 324(5928): 804~807

    [33] [33] M. Tomura, N. Yoshida, J. Tanaka et al.. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “kaede” transgenic mice[J]. Proc. Natl. Acad. Sci. USA, 2008, 105(31): 10871~10876

    [34] [34] G. D. Victora, T. A. Schwickert, D. R. Fooksman et al.. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter[J]. Cell, 2010, 143(4): 592~605

    [35] [35] K. A. Lukyanov, D. M. Chudakov, S. Lukyanov et al.. Innovation: photoactivatable fluorescent proteins[J]. Nature Rev. Mol. Cell. Biol., 2005, 6(11): 885~891

    [36] [36] M. Fernandez-Suarez, A. Y. Ting. Fluorescent probes for super-resolution imaging in living cells[J]. Nature Rev. Mol. Cell. Biol., 2008, 9(12): 929~943

    [37] [37] J. Lippincott-Schwartz, G. H. Patterson. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging[J]. Trends Cell. Biol., 2009, 19(11): 555~565

    [38] [38] Yang Jie, Zhang Zhihong, Luo Qingming. Recent progress in fluorescent proteins research[J]. Acta Biophysica Sinica, 2010, 26(11): 1025~1035

    [39] [39] Razansky Daniel, Distel Martin, Vinegoni Claudio et al.. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photon., 2009, 3(7): 412~417

    [40] [40] H. Hutter. Five-colour in vivo imaging of neurons in caenorhabditis elegans[J]. J. Microsc., 2004, 215(Pt 2): 213~218

    [41] [41] T. Kogure, S. Karasawa, T. Araki et al.. A fluorescent variant of a protein from the stony coral montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy[J]. Nature Biotechnol., 2006, 24(5): 577~581

    [42] [42] J. Livet, T. A. Weissman, H. Kang et al.. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system[J]. Nature, 2007, 450(7166): 56~62

    [43] [43] C. Wu, J. Zheng, C. Huang et al.. Hybrid silica-nanocrystal-organic dye superstructures as post-encoding fluorescent probes[J]. Angew. Chem. Int. Ed. Engl., 2007, 46(28): 5393~5396

    [44] [44] B. H. Zinselmeyer, J. N. Lynch, X. Zhang et al.. Video-rate two-photon imaging of mouse footpad: a promising model for studying leukocyte recruitment dynamics during inflammation[J]. Inflamm. Res., 2008, 57(3): 93~96

    [45] [45] T. Chtanova, M. Schaeffer, S. J. Han et al.. Dynamics of neutrophil migration in lymph nodes during infection[J]. Immunity, 2008, 29(3): 487~496

    [46] [46] N. C. Peters, J. G. Egen, N. Secundino et al.. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies[J]. Science, 2008, 321(5891): 970~974

    [47] [47] B. McDonald, K. Pittman, G. B. Menezes et al.. Intravascular danger signals guide neutrophils to sites of sterile inflammation[J]. Science, 2010, 330(6002): 362~366

    [48] [48] J. C. Waite, I. Leiner, P. Lauer et al.. Dynamic imaging of the effector immune response to listeria infection in vivo[J]. PLoS Pathog., 2011, 7(3): e1001326

    [49] [49] J. Larmann, T. Frenzel, A. Hahnenkamp et al.. In vivo fluorescence-mediated tomography for quantification of urokinase receptor-dependent leukocyte trafficking in inflammation[J]. Anesthesiology, 2010, 113(3): 610~618

    [50] [50] B. Breart, F. Lemaitre, S. Celli et al.. Two-photon imaging of intratumoral cd8(+) T cell cytotoxic activity during adoptive t cell therapy in mice[J]. J. Clinical Investigation, 2008, 118(4): 1390~1397

    [51] [51] A. Boissonnas, L. Fetler, I. S. Zeelenberg et al.. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor[J]. J. Experimental Medicine, 2007, 204(2): 345~356

    [52] [52] P. Mrass, H. Takano, L. G. Ng et al.. Random migration precedes stable target cell interactions of tumor-infiltrating T cells[J]. J. Experimental Medicine, 2006, 203(12): 2749~2761

    [53] [53] J. Deguine, B. Breart, F. Lemaitre et al.. Intravital imaging reveals distinct dynamics for natural killer and cd8(+) T cells during tumor regression[J]. Immunity, 2010, 33(4): 632~644

    [54] [54] J. B. Wyckoff, Y. Wang, E. Y. Lin et al.. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Res., 2007, 67(6): 2649~2656

    [55] [55] M. J. Pittet. Behavior of immune players in the tumor microenvironment[J]. Curr. Opin. Oncol., 2009, 21(1): 53~59

    [56] [56] S. Celli, M. L. Albert, P. Bousso. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy[J]. Nature Med., 2011, 17(6): 744~749

    [57] [57] Z. Fan, J. A. Spencer, Y. Lu et al.. In vivo tracking of “color-coded” effector, natural and induced regulatory T cells in the allograft response[J]. Nature Med., 2010, 16(6): 718~722

    [58] [58] D. Kreisel, R. G. Nava, W. Li et al.. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(42): 18073~18078

    [59] [59] X. Li, G. L. Ferrel, M. C. Guerra et al.. Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients[J]. Photochem. Photobiol. Sci., 2011, 10(5): 817~821

    [60] [60] X. Li, M. F. Naylor, H. Le et al.. Clinical effects of in situ photoimmunotherapy on late-stage melanoma patients: a preliminary study[J]. Cancer Biol. Ther., 2010, 10(11): 1081~1087

    CLP Journals

    [1] Wei Yadong, Wu Yunxia, Zhang Zhijian. Photoacoustic Tomography of Multi-Layer Sample Using Acoustic Lens[J]. Acta Optica Sinica, 2012, 32(6): 611002

    [2] Tan Zuojun, Xie Jing, Lu Jun, Wang Xianfeng, Chen Jianjun. High Spatial Resolution Confocal Microscopy Using Adaptive Optics[J]. Laser & Optoelectronics Progress, 2012, 49(9): 90002

    Tools

    Get Citation

    Copy Citation Text

    Luo Qingming, Zhang Zhihong. Progress in Immunophotonics[J]. Acta Optica Sinica, 2011, 31(9): 900114

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 2, 2011

    Accepted: --

    Published Online: Aug. 31, 2011

    The Author Email: Qingming Luo (qluo@mail.hust.edu.cn)

    DOI:10.3788/aos201131.0900114

    Topics