Journal of Innovative Optical Health Sciences, Volume. 10, Issue 2, 1650042(2017)
The interaction of dendritic cells and γδ T cells promotes the activation of γδ T cells in experimental autoimmune uveitis
[1] [1] Rothova A., Suttorp V. S., Frits T. and Kijlstra A., Causes and frequency of blindness in patients with intraocular inflammatory disease, Br. J. Ophthalmol. 80 (1996) 332–336.
[2] [2] Wucherpfennig K. W., Newcombe J., Li H., Keddy C., Cuzner M. L. and Hafler D. A., γδγδ T-cell receptor repertoire in acute multiple sclerosis lesions, Proc. Natl. Acad. Sci. 89 (10) (1992) 4588–4592.
[3] [3] Peng S. L., Madaio M. P., Hayday A. C. and Craft J., Propagation and regulation of systemic autoimmunity by γδγδ T cells, J. Immunol. 157 (12) (1996) 5689–5698.
[4] [4] Spahn T. W., Issazadah S., Salvin A. J. and Weiner H. L., Decreased severity of myelin oligodendrocyte glycoprotein peptide 33-35-induced experimental autoimmune encephalomyelitis in mice with a disrupted TCR δδ chain gene, Eur. J. Immunol. 29 (12) (1999) 4060–4071.
[5] [5] Rajan A. J., Asensio V. C., Campbell I. L. and Brosnan C. F., Experimental autoimmune encephalomyelitis on the SJL mouse: effect of γδγδ T cell depletion on chemokine and chemokine receptor expression in the central nervous system, J. Immunol. 164 (4) (2000) 2120–2130.
[6] [6] Odyniec A., Szczepanik M., Mycko M. P., Stasiolek M., Raine C. S. and Selmaj K. W., γδγδ T cells enhance the expression of experimental autoimmune encephalomyelitis by promoting antigen presentation and IL-12 production, J. Immunol. 173 (1) (2004) 682–694.
[7] [7] Uezu K., Kawakami K., Miyagi K., Kinjo Y., Kinjo T., Ishikawa H. and Saito A., Accumulation of γδγδ T-cells in the lungs and their regulatory roles in Th1 response and host defense against pulmonary infection with Cryptococcus neoformans, J. Immunol. 172 (12) (2004) 7629–7634.
[8] [8] D’Souza C. D., Cooper A. M., Frank A. A., Mazzaccaro R. J., Bloom B. R. and Orme I. M., An anti-inflammatory role for γδγδ T lymphocytes in acquired immunity to Mycobacterium tuberculosis, J. Immunol. 158 (3) (1997) 1217–1221.
[9] [9] Born W., Cady C., Jones-Carson J., Mukasa A., Lahn M. and O’Brien R., Immunoregulatory functions of γδγδ T cells, Adv. Immunol. 71 (1999) 77–144.
[10] [10] Nian H., Shao H., O’Brien R. L., Born W. K., Kaplan H. J. and Sun D., Activated gammadelta T cells promote the activation of uveitogenic T cells and exacerbate EAU development, Invest. Ophthalmol. Vis. Sci. 52 (8) (2011) 5920–5927.
[11] [11] Cui Y., Shao H., Lan C., Nian H., O’Brien R. L., Born W. K., Kaplan H. J. and Sun D., Major role of γδγδ T cells in the generation of IL-17 uveitogenic T cells, J. Immunol. 183 (1) (2009) 560–567.
[12] [12] Steinman R. M. and Banchereau J., Taking dendritic cells into medicine, Nature 449 (7161) (2007) 419–426.
[13] [13] Steinman R. M., Lasker Basic Medical Research Award Dendritic cells: Versatile controllers of the immune system, Nat. Med. 13 (10) (2007) 1155–1159.
[14] [14] De Libero G. and Mori L., Recognition of lipid antigens by T cells, Nat. Rev. Immunol. 5 (6) (2005) 485–496.
[15] [15] Behar S. M. and Porcelli S. A., CD1-restricted T cells in host defense to infectious diseases, Curr. Top. Microbiol. Immunol. 314 (2007) 215–250.
[16] [16] Miyagawa F., Tanaka Y. and Yamashita S., Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphophonate antigen, J. Immunol. 166 (9) (2001) 5508–5514.
[17] [17] Devilder M. C., Maillet S., Bouyge-Moreau I., Donnadieu E., Bonneville M. and Scotet E., Potentiation of antigen-stimulated V galnma 9V delta 2 T cell cytokine production by immature dendrifle cells(DC)and reciprocal effect on DC maturation, J. Immunol. 176 (3) (2006) 1386–1393.
[18] [18] Inaba K., Turley S., Iyoda T., Yamaide F., Shimoyama S., Reis e Sousa C., Germain R. N., Mellman I. and Steinman R. M., The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli, J. Exp. Med. 191 (6) (2000) 927–936.
[19] [19] Fujii S., Liu K., Smith C., Bonito A. J. and Steinman R. M., The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation, J. Exp. Med. 199 (12) (2004) 1607–1618.
[20] [20] Heuss N. D., Lehmann U., Norbury C. C., McPherson S. W. and Gregerson D. S., Local Activation of Dendritic Cells Alters the Pathogenesis of Autoimmune Disease in the Retina, J. Immunol. 188 (3) (2012) 1191–1200.
[21] [21] Chen P., Denniston A. K., Hirani S., Hannes S. and Nussenblatt R. B., Role of dendritic cell subsets in immunity and their contribution to noninfectious uveitis, Surv. Ophthalmol. 60 (3) (2015) 242–249.
[22] [22] Thurau S. R., Chan C. C., Nussenblatt R. B. and Caspi R. R., Oral tolerance in a murine model of relapsing experimental autoimmune uveoretinitis (EAU): Induction of protective tolerance in primed animals, Clin. Exp. Immunol. 109 (2) (1997) 370–376.
[23] [23] Liang D., Zuo A., Shao H., Born W. K., O’Brien R. L., Kaplan H. J. and Sun D., Role of CD25+ dendritic cells in the generation of Th17 autoreactive T cells in autoimmune experimental uveitis, J. Immunol. 188 (11) (2012) 5785–5791.
[24] [24] Leslie D. S., Vincent M. S., Spada F. M., Das H., Sugita M., Morita C. T. and Brenner M. B., CD1-mediated gamma/delta T cell maturation of dendritic cells, J. Exp. Med. 196 (12) (2002) 1575–1584.
[25] [25] Collins C., Wolfe J., Roessner K., Shi C., HSigal L. and Budd R. C., Lyme arthritis synovial gammadelta T cells instruct dendritic cells via fas ligand, J. Immunol. 175 (9) (2005) 5656–5665.
[26] [26] Munz C., Steinman R. M. and Fujii S., Dendritic cell maturation by innate lymphocytes: Coordinated stimulation of innate and adaptive immunity, J. Exp. Med. 202 (2) (2005) 203–207.
[27] [27] Fu Y. X., Roark C. E., Kelly K., Drevets D., Campbell P., O’Brien R. and Born W., Immune protection and control of inflammatory tissue necrosis by γδγδ T cells, J. Immunol. 153 (7) (1994) 3101–3115.
[28] [28] Moore T. A., Moore B. B., Newstead M. W. and Standiford T. J., γδγδ T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia, J. Immunol. 165 (5) (2000) 2643–2650.
[29] [29] Nakasone C., Yamamoto N., Nakamatsu M., Kinjo T., Miyagi K., Uezu K., Nakamura K., Higa F., Ishikawa H., O’brien R. L., Ikuta K., Kaku M., Fujita J. and Kawakami K., Accumulation of γδγδ T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection, Microbes. Infect. 9 (3) (2007) 251–258.
[30] [30] Mombaerts P., Arnoldi J., Russ F., Tonegawa S. and Kaufmann S. H., Different roles of αβ and γδγδ T cells in immunity against an intracellular bacterial pathogen, Nature 365 (6441) (1993) 53–56.
[31] [31] Braun R. K., Ferrick C., Neubauer P., Sjoding M., Sterner-Kock A., Kock M., Putney L., Ferrick D. A., Hyde D. M. and Love R. B., IL-17 producing γδγδ T cells are required for a controlled inflammatory response after bleomycin-induced lung injury, Inflammation 31 (3) (2008) 167–179.
[32] [32] Roark C. L., French J. D., Taylor M. A., Bendele A. M., Born W. K. and O’Brien R. L., Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells, J. Immunol. 179 (8) (2007) 5576–5583.
[33] [33] Sutton C. E., Lalor S. J., Sweeney C. M., Brereton C. F., Lavelle E. C. and Mills K. H., Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity, Immunity. 31 (2) (2009) 331–341.
[34] [34] Petermann F., Rothhammer V., Claussen M. C., Haas J. D., Blanco L. R., Heink S., Prinz I., Hemmer B., Kuchroo V. K., Oukka M. and Korn T., γδγδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism, Immunity 33 (3) (2010) 351–363.
[35] [35] Kabelitz D., Wesch D. and He W., Perspectives of gammadelta T cells in tumor immunology, Cancer Res. 67 (1) (2007) 5–8.
[36] [36] Girardi M., Immunosurveillance and immunoregulation by gammadelta T cells, J. Invest. Dermatol. 126 (1) (2006) 25–31.
[37] [37] Nian H., Shao H., Zhang G., Born W. K., O’Brien R. L., Kaplan H. J. and Sun D., Regulatory effect of T cells on IL-17 uveitogenic T cells, Invest. Ophthalmol. Vis. Sci. 51 (9) (2010) 4661–4667.
[38] [38] Wands J. M., Roark C. L., Aydintug M. K., Jin N., Hahn Y. S., Cook L., Yin X., Porto J. Dal, Lahn M., Hyde D. M., Gelfand E. W., Mason R. J., O’Brien R. L. and Born W. K., Distribition and leukocyte contacts of gammadelta T cells in the lung, J. Leukoc. Biol. 78 (5) (2005) 1086–1096.
[39] [39] Grakoui A., Bromley S.K., Sumen C., Davis M.M, Shaw A. S., Allen P. M. and Dustin M. L., The immunological synapse: A molecular machine controlling T cell activation, Science 285 (1999) 221–227.
[40] [40] Lin W., Fan Z., Suo Y., Deng Y., Zhang M., Wang J., Wei X. and Chu Y., The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response, Immunol. Cell Biol. 93 (2015) 99–110.
[41] [41] Comrie W. A., Li S., Boyle S. and Burkhardt J. K., The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility, J. Cell Biol. 208 (4) (2015) 457–473.
Get Citation
Copy Citation Text
Beibei Wang, Wei Lin, Jike Song, Xiaofeng Xie, Hongsheng Bi. The interaction of dendritic cells and γδ T cells promotes the activation of γδ T cells in experimental autoimmune uveitis[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1650042
Received: Dec. 30, 2015
Accepted: May. 15, 2016
Published Online: Dec. 27, 2018
The Author Email: Lin Wei (linw1978@163.com)