Optoelectronics Letters, Volume. 20, Issue 2, 122(2024)
E-MobileNeXt: face expression recognition model based on improved MobileNeXt
[1] [1] REVINA I M, EMMANUEL W R S. A survey on human face expression recognition techniques[J]. Journal of King Saud University-computer and information sci-ences, 2021, 33(6): 619-628.
[2] [2] LI S, DENG W. Deep facial expression recognition: a survey[J]. IEEE transactions on affective computing, 2020, 13(3): 1195-1215.
[3] [3] YU Z, ZHANG C. Image based static facial expression recognition with multiple deep network learn-ing[C]//Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, November 9-13, 2015, Washington, USA. New York: Association for Computing Machinery, 2015: 435-442.
[4] [4] JIANG S, XU X, LIU F, et al. CS-GResNet: a simple and highly efficient network for facial expression rec-ognition[C]//2022 IEEE International Conference on Acoustics, May 22-27, 2022, Singapore. New York: IEEE, 2022: 2599-2603.
[5] [5] BARROS P, CHURAMANI N, SCIUTTI A. The facechannel: a light-weight deep neural network for fa-cial expression recognition[C]//2020 15th IEEE Interna-tional Conference on Automatic Face and Gesture Rec-ognition (FG 2020), November 16-20, 2020, Buenos Aires, Argentina. New York: IEEE, 2020: 652-656.
[6] [6] RODOLFO F P, MITRE H H. ResMoNet: a residual mobile-based network for facial emotion recognition in resource-limited systems[EB/OL]. (2020-05-15)[2023-04-10]. https://arxiv.org/abs/2005.07649.
[7] [7] ZHOU D, HOU Q, CHEN Y, et al. Rethinking bottle-neck structure for efficient mobile network de-sign[C]//Computer Vision-ECCV 2020: 16th European Conference, August 23-28, 2020, Glasgow, UK. Berlin, Heidelberg: Springer-Verlag, 2020: 680-697.
[8] [8] DING X, ZHANG X, MA N, et al. Repvgg: making vgg-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 20-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 13733-13742.
[9] [9] HAN K, WANG Y, TIAN Q, et al. Ghostnet: more fea-tures from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 1580-1589.
[10] [10] SINHA D, EL-SHARKAWY M. Thin mobilenet: an enhanced mobilenet architecture[C]//2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), October 10-12, 2019, New York, USA. New York: IEEE, 2019: 0280-0285.
[11] [11] LI X, HU X, YANG J. Spatial group-wise enhance: im-proving semantic feature learning in convolutional net-works[EB/OL]. (2019-05-23) [2023-04-10]. https://arxiv. org/abs/1905.09646v1.
[12] [12] LI S, DENG W, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recog-nition in the wild[C]//Proceedings of the IEEE Confer-ence on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 2852-2861.
[13] [13] LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (CK+): a complete dataset for ac-tion unit and emotion-specified expression[C]//2010 IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition-Workshops, June 13-18, 2010, San Francisco, CA, USA. New York: IEEE, 2010: 94-101.
[14] [14] NIGAM S, SINGH R, MISRA A K. Efficient facial ex-pression recognition using histogram of oriented gradi-ents in wavelet domain[J]. Multimedia tools and appli-cations, 2018, 77: 28725-28747.
[15] [15] LIU P, HAN S, MENG Z, et al. Facial expression recog-nition via a boosted deep belief net-work[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 2014: 1805-1812.
[16] [16] WANG Z, ZENG F, LIU S, et al. OAENet: oriented attention ensemble for accurate facial expression recog-nition[J]. Pattern recognition, 2021, 112: 107694.
[17] [17] HUA C H, HUYNH T T, SEO H, et al. Convolutional network with densely backward attention for facial ex-pression recognition[C]//2020 14th International Con-ference on Ubiquitous Information Management and Communication (IMCOM), January 3-5, 2020, Taichung, China. New York: IEEE, 2020: 1-6.
[18] [18] GAN C, XIAO J, WANG Z, et al. Facial expression recognition using densely connected convolutional neu-ral network and hierarchical spatial attention[J]. Image and vision computing, 2022, 117: 104342.
[19] [19] GHOSH S, DHALL A, SEBE N. Automatic group affect analysis in images via visual attribute and feature net-works[C]//2018 25th IEEE International Conference on Image Processing (ICIP), October 7-10, 2018, Athens, Greece. New York: IEEE, 2018: 1967-1971.
[20] [20] LI Y, ZENG J, SHAN S, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE transactions on image processing, 2018, 28(5): 2439-2450.
[21] [21] ZENG J, SHAN S, CHEN X. Facial expression recogni-tion with inconsistently annotated data-sets[C]//Proceedings of the European Conference on Computer Vision (ECCV), September 8-14, 2018, Mu-nich, Germany. Berlin, Heidelberg: Springer-Verlag, 2018: 227-243.
Get Citation
Copy Citation Text
ZHANG Xiang, YAN Chunman. E-MobileNeXt: face expression recognition model based on improved MobileNeXt[J]. Optoelectronics Letters, 2024, 20(2): 122
Received: May. 17, 2023
Accepted: Aug. 6, 2023
Published Online: Jul. 24, 2024
The Author Email: Chunman YAN (yancm2022@163.com)