Ultrafast Science, Volume. 4, Issue 1, 0069(2024)

Coherent Terahertz Wave Generation from Mono- and Multilayer MoS2 through Quantum Interference

Yuhang He, Yuxuan Chen, Xiangyu La, Chenyin Dai, Zhen Tian*, and Jianming Dai*
Author Affiliations
  • Center for Terahertz Waves and School of Precision Instrument & Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
  • show less
    References(67)

    [1] [1] Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nat Mater. 2002;1(1):26–33.

    [3] [3] Zhao Y, Yang Y, Sun H-B. Nonlinear meta-optics towards applications. PhotoniX. 2021;2:3.

    [4] [4] Stantchev RI, Yu X, Blu T, Pickwell-MacPherson E. Real-time terahertz imaging with a single-pixel detector. Nat Commun. 2020;11(1):2535.

    [6] [6] Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H-L, Wang L, Chang C, Fan C, Li J, et al. Near-field nanoscopic terahertz imaging of single proteins. Small. 2021;17(3):2005814.

    [7] [7] Jepsen PU, Cooke DG, Koch M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011;5(1):124–166.

    [8] [8] Peng Y, Shi C, Zhu Y, Gu M, Zhuang S. Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement. PhotoniX. 2020;1:12.

    [9] [9] Mittendorff M, Winnerl S, Murphy TE. 2D THz optoelectronics. Adv Opt Mater. 2021;9(3):2001500.

    [10] [10] Qiu Q, Huang Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv Mater. 2021;33(15):2008126.

    [11] [11] Rice A, Jin Y, Ma XF, Zhang XC, Bliss D, Larkin J, Alexander M. Terahertz optical rectification from 〈110〉 zinc-blende crystals. Appl Phys Lett. 1994;11(64):1324.

    [12] [12] Carletti L, McDonnell C, Arregui Leon U, Rocco D, Finazzi M, Toma A, Ellenbogen T, Della Valle G, Celebrano M, De Angelis C. Nonlinear THz generation through optical rectification enhanced by phonon–polaritons in lithium niobate thin films. ACS Photonics. 2023;10(9):3419–3425.

    [13] [13] Maysonnave J, Huppert S, Wang F, Maero S, Berger C, de Heer W, Norris TB, De Vaulchier LA, Dhillon S, Tignon J, et al. Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses. Nano Lett. 2014;14(10):5797–5802.

    [14] [14] Zhang L, Zhang D, Hu F, Xu X, Zhao Q, Sun X, Wu H, Lü Z, Wang X, Zhao Z. Generation and control of ultrafast circular photon drag current in multilayer PtSe2 revealed via terahertz emission. Adv Opt Mater. 2023;11(2):2201881.

    [16] [16] Obraztsov PA, Lyashenko D, Chizhov PA, Konishi K, Nemoto N, Kuwata-Gonokami M, Welch E, Obraztsov AN, Zakhidov A. Ultrafast zero-bias photocurrent and terahertz emission in hybrid perovskites. Commun Phys. 2018;1:14.

    [17] [17] Pettine J, Padmanabhan P, Sirica N, Prasankumar RP, Taylor AJ, Chen HT. Ultrafast terahertz emission from emerging symmetry-broken materials. Light Sci Appl. 2023;12(1):133.

    [18] [18] Spasenović M, Betz M, Costa L, van Driel HM. All-optical coherent control of electrical currents in centrosymmetric semiconductors. Phys Rev B. 2008;77(8): Article 085201.

    [19] [19] Fraser JM, Shkrebtii AI, Sipe JE, Van Driel HM. Quantum interference in electron-hole generation in noncentrosymmetric semiconductors. Phys Rev Lett. 1999;83(20):4192–4195.

    [20] [20] Haché A, Kostoulas Y, Atanasov R, Hughes JLP, Sipe JE, Driel HMV. Observation of coherently controlled photocurrent in unbiased, bulk GaAs. Phys Rev Lett. 1997;78(2):306–309.

    [22] [22] Cook DJ, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Opt Lett. 2000;25(16):1210–1212.

    [23] [23] Jin Q, Dai J. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Appl Phys Lett. 2018;113: Article 261101.

    [24] [24] Yuxuan C, Yuhang H, Liyuan L, Zhen T, Xi-Cheng Z, Jianming D. Plasma-based terahertz wave photonics in gas and liquid phases. Photonics Insights. 2023;2:R06.

    [26] [26] Heide C, Eckstein T, Boolakee T, Gerner C, Weber HB, Franco I, Hommelhoff P. Electronic coherence and coherent dephasing in the optical control of electrons in graphene. Nano Lett. 2021;21(22):9403–9409.

    [27] [27] Totero Gongora JS, Peters L, Tunesi J, Cecconi V, Clerici M, Pasquazi A, Peccianti M. All-optical two-color terahertz emission from quasi-2D nonlinear surfaces. Phys Rev Lett. 2020;125(26): Article 263901.

    [28] [28] Bhat R, Sipe J. Optically injected spin currents in semiconductors. Phys Rev Lett. 2000;85(25):5432–5435.

    [30] [30] Zhao H, Loren EJ, Smirl AL, van Driel HM. Dynamics of charge currents ballistically injected in GaAs by quantum interference. J Appl Phys. 2008;103:201.

    [31] [31] Bas DA, Vargas-Velez K, Babakiray S, Johnson TA, Borisov P, Stanescu TD, Lederman D, Bristow AD. Coherent control of injection currents in high-quality films of Bi2Se3. Appl Phys Lett. 2015;106: Article 041109.

    [32] [32] Christian S, Jean-Michel M, Markus B, Arthur L. All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors. Phys Rev B. 2009;79(4):45208.

    [33] [33] Zhihui Lü DZ, Zhou Z, Sun L, Zhao Z, Yuan J. Coherently controlled terahertz source for a time domain spectroscopy system via injection current in bulk ZnSe. Appl Opt. 2012;51(5):676–679.

    [34] [34] Dai JM, Karpowicz N, Zhang XC. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys Rev Lett. 2009;103(2): Article 023001.

    [35] [35] Peters L, Totero Gongora JS, Cecconi V, Olivieri L, Tunesi J, Pasquazi A, Peccianti M. Concurrent terahertz generation via quantum interference in a quadratic media. Adv Opt Mater. 2023;11(15):2202578.

    [36] [36] He Y, Chen Y, Zhao J, Tian Z, Dai J. Coherent terahertz radiation from indium tin oxide film via third-order optical nonlinearity. Appl Phys Lett. 2023;122(4): Article 041106.

    [37] [37] Costa L, Betz M, Spasenović M, Bristow AD, van Driel HM. All-optical injection of ballistic electrical currents in unbiased silicon. Nat Phys. 2007;3:632–635.

    [38] [38] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Adv Mater. 2018;30(24):1705963.

    [39] [39] Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev. 2015;44(9):2584–2586.

    [40] [40] Tongay S, Zhou J, Ataca C, Lo K, Matthews TS, Li J, Grossman JC, Wu J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012;12(11):5576–5580.

    [41] [41] Steinhoff A, Kim JH, Jahnke F, Rösner M, Kim DS, Lee C, Han GH, Jeong MS, Wehling TO, Gies C. Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 2015;15(10):6841–6847.

    [42] [42] Li X, Zhu H. Two-dimensional MoS2: Properties, preparation, and applications. J Mater. 2015;1(1):33–44.

    [43] [43] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. Single-layer MoS2 phototransistors. ACS Nano. 2012;6(1):74–80.

    [44] [44] Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015;15(11):7307–7313.

    [46] [46] Tsai M-L, Su S-H, Chang J-K, Tsai D-S, Chen C-H, Wu C-I, Li L-J, Chen L-J, He J-H. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014;8(8):8317–8322.

    [48] [48] Lee J, Wang Z, He K, Yang R, Shan J, Feng PX-L. Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range. Sci Adv. 2018;4(3):eaao6653.

    [49] [49] Huang Y, Zhu L, Zhao Q, Guo Y, Ren Z, Bai J, Xu X. Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy. ACS Appl Mater Interfaces. 2017;9(5):4956–4965.

    [50] [50] Huang Y, Zhu L, Yao Z, Zhang L, He C, Zhao Q, Bai J, Xu X. Terahertz surface emission from layered MoS2 crystal: Competition between surface optical rectification and surface photocurrent surge. J Phys Chem C. 2017;122(1):481–488.

    [51] [51] Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv Funct Mater. 2012;22(7):1385–1390.

    [52] [52] Watson GH Jr, Daniels WB, Wang CS. Measurements of Raman intensities and pressure dependence of phonon frequencies in sapphire. J Appl Phys. 1981;52:956–958.

    [53] [53] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010;10(4):1271–1275.

    [54] [54] Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J Phys Chem Lett. 2018;9(23):6814–6817.

    [55] [55] Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J, Xu X. Terahertz surface and interface emission spectroscopy for advanced materials. J Phys Condens Matter. 2019;31(15): Article 153001.

    [56] [56] He Y, Chen Y, Lu C, Zhang Y, Tian Z, Xu X, Dai J. Coherent injection photocurrent in bismuth sulfide film induced by one-plus-two photon absorption quantum interference. Opt Lett. 2022;47(5):1206–1209.

    [57] [57] Sun D, Rioux J, Sipe JE, Zou Y, Mihnev MT, Berger C, de Heer WA, First PN, Norris TB. Evidence for interlayer electronic coupling in multilayer epitaxial graphene from polarization-dependent coherently controlled photocurrent generation. Phys Rev B. 2012;85(16): Article 165427.

    [58] [58] Dai J, Xie X, Zhang X-C. Terahertz wave amplification in gases with the excitation of femtosecond laser pulses. Appl Phys Lett. 2007;91: Article 211102.

    [59] [59] Xie X, Dai J, Zhang X-C. Coherent control of THz wave generation in ambient air. Phys Rev Lett. 2006;96(7): Article 075005.

    [60] [60] Ellis JK, Lucero MJ, Scuseria GE. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl Phys Lett. 2011;99: Article 211102.

    [61] [61] Hu J, Xiang Y, Ferrari BM, Scalise E, Vanacore GM. Indirect exciton-phonon dynamics in MoS2 revealed by ultrafast electron diffraction. Adv Funct Mater. 2023;33(19):2206395.

    [62] [62] Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett. 2010;105: Article 136805.

    [63] [63] Rioux J, Sipe JE, Burkard G. Interference of stimulated electronic Raman scattering and linear absorption in coherent control. Phys Rev B. 2014;90(11): Article 115424.

    [64] [64] Atanasov R, Haché A, Hughes JLP, Van Driel HM, Sipe JE. Coherent control of photocurrent generation in bulk semiconductors. Phys Rev Lett. 1996;76(10):1703–1706.

    [65] [65] Muniz RA, Sipe JE. All-optical injection of charge, spin, and valley currents in monolayer transition-metal dichalcogenides. Phys Rev B. 2015;91(8): Article 085404.

    [66] [66] Liu F, Zhao X, Yan X-Q, Xin X, Liu Z-B, Tian J-G. Measuring third-order susceptibility tensor elements of monolayer MoS2 using the optical Kerr effect method. Appl Phys Lett. 2018;113(5): Article 051901.

    [67] [67] Newson RW, Green AA, Hersam MC, van Driel HM. Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite. Phys Rev B. 2011;83(11): Article 115421.

    Tools

    Get Citation

    Copy Citation Text

    Yuhang He, Yuxuan Chen, Xiangyu La, Chenyin Dai, Zhen Tian, Jianming Dai. Coherent Terahertz Wave Generation from Mono- and Multilayer MoS2 through Quantum Interference[J]. Ultrafast Science, 2024, 4(1): 0069

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 1, 2024

    Accepted: Jun. 17, 2024

    Published Online: Dec. 13, 2024

    The Author Email: Tian Zhen (jianmingdai@tju.edu.cn), Dai Jianming (tianzhen@tju.edu.cn)

    DOI:10.34133/ultrafastscience.0069

    Topics