Journal of the Chinese Ceramic Society, Volume. 53, Issue 3, 531(2025)

Mechanism of K2HPO4 Improving Early Strength of Magnesium Silicate Hydrate Cements

LENG Difei1... LI Xiangguo1,2,*, LV Yang1 and LI Neng1 |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 2State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
  • show less
    References(26)

    [1] [1] WALLING S A, PROVIS J L. Magnesia-based cements: A journey of 150 years, and cements for the future?[J]. Chem Rev, 2016, 116(7): 4170-4204.

    [2] [2] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cem Concr Res, 2011, 41(12): 1232-1243.

    [3] [3] ZHANG T T, CHEESEMAN C R, VANDEPERRE L J. Development of low pH cement systems forming magnesium silicate hydrate (M-S-H)[J]. Cem Concr Res, 2011, 41(4): 439-442.

    [4] [4] ZHANG T T, VANDEPERRE L J, CHEESEMAN C R. Magnesium-silicate-hydrate cements for encapsulating problematic aluminium containing wastes[J]. J Sustain Cem Based Mater, 2012, 1(1-2): 34-45.

    [5] [5] GAUCHER E C, BLANC P. Cement/clay interactions: A review: Experiments, natural analogues, and modeling[J]. Waste Manag, 2006, 26(7): 776-788.

    [6] [6] BERNER U, KULIK D A, KOSAKOWSKI G. Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste[J]. Phys Chem Earth Parts A/B/C, 2013, 64: 46-56.

    [10] [10] LI X G, FU Q Y, LV Y, et al. Influence of curing conditions on hydration of magnesium silicate hydrate cement[J]. Constr Build Mater, 2022, 361: 129648.

    [12] [12] LIAO J F, SENNA M. Thermal behavior of mechanically amorphized talc[J]. Thermochim Acta, 1992, 197(2): 295-306.

    [13] [13] SUQUET H. Effects of dry grinding and leaching on the crystal structure of chrysotile[J]. Clays Clay Miner, 1989, 37(5): 439-445.

    [14] [14] AGLIETTI E F. The effect of dry grinding on the structure of talc[J]. Appl Clay Sci, 1994, 9(2): 139-147.

    [15] [15] DRIEF A, NIETO F. The effect of dry grinding on antigorite from mulhacen, Spain[J]. Clays Clay Miner, 1999, 47(4): 417-424.

    [16] [16] BERNARD E, LOTHENBACH B, CAU-DIT-COUMES C, et al. Magnesium and calcium silicate hydrates, part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H)[J]. Appl Geochem, 2018, 89: 229-242.

    [17] [17] ROOSZ C, GRANGEON S, BLANC P, et al. Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2: 1 Mg-Si phyllosilicates[J]. Cem Concr Res, 2015, 73: 228-237.

    [18] [18] ZHANG T T, ZHANG J B, CHANG J, et al. Hydration and strength development in magnesium oxysulfate (MOS) cement incorporating silicic acid[J]. Compos Part B Eng, 2024, 268: 111081.

    [19] [19] SIMONI M, WOO C L, ZHAO H, et al. Reaction mechanisms, kinetics, and nanostructural evolution of magnesium silicate hydrate (M-S-H) gels[J]. Cem Concr Res, 2023, 174: 107295.

    [21] [21] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Phys Rev B Condens Matter, 1993, 47(1): 558-561.

    [22] [22] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50.

    [23] [23] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953-17979.

    [24] [24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.

    [25] [25] WANG V, XU N, LIU J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Comput Phys Commun, 2021, 267: 108033.

    [26] [26] MARTINI F, TONELLI M, GEPPI M, et al. Hydration of MgO/SiO2 and Portland cement mixtures: A structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy[J]. Cem Concr Res, 2017, 102: 60-67.

    [27] [27] BERNARD E, LOTHENBACH B, POCHARD I, et al. Alkali binding by magnesium silicate hydrates[J]. J Am Ceram Soc, 2019, 102(10): 6322-6336.

    [28] [28] ZHANG T T, ZOU J, WANG B M, et al. Characterization of magnesium silicate hydrate (MSH) gel formed by reacting MgO and silica fume[J]. Materials, 2018, 11(6): 909.

    [29] [29] YANG H X, PREWITT C T, FROST D J. Crystal structure of the dense hydrous magnesium silicate, phase D[J]. Am Mineral, 1997, 82(5-6): 651-654.

    [30] [30] KOCH-MLLER M, DERA P, FEI Y, et al. Polymorphic phase transition in superhydrous phase B[J]. Phys Chem Miner, 2005, 32(5): 349-361.

    [31] [31] GRUNER J W. The crystal structures of talc and pyrophyllite[J]. Z Fr Kristallogr Cryst Mater, 1934, 88(1-6): 412-419.

    Tools

    Get Citation

    Copy Citation Text

    LENG Difei, LI Xiangguo, LV Yang, LI Neng. Mechanism of K2HPO4 Improving Early Strength of Magnesium Silicate Hydrate Cements[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 531

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: May. 14, 2024

    Accepted: Mar. 10, 2025

    Published Online: Mar. 10, 2025

    The Author Email: Xiangguo LI (lxggroup@163.com)

    DOI:10.14062/j.issn.0454-5648.20240337

    Topics