Opto-Electronic Advances, Volume. 6, Issue 11, 230094(2023)

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response

Mingrui Shao1... Chang Ji1, Jibing Tan1, Baoqiang Du1, Xiaofei Zhao1, Jing Yu1, Baoyuan Man1, Kaichen Xu2,*, Chao Zhang1,** and Zhen Li1,*** |Show fewer author(s)
Author Affiliations
  • 1Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 2State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China
  • show less
    References(61)

    [1] X Wang, SC Huang, S Hu, S Yan, B Ren. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Rev Phys, 253-271(2020).

    [2] XY Chen, QQ Ding, C Bi, J Ruan, SK Yang. Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nat Commun, 7807(2022).

    [3] MSS Bharati, VR Soma. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv, 210048(2021).

    [4] SY Ding, J Yi, JF Li, B Ren, DY Wu et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater, 16021(2016).

    [5] XJ Du, D Liu, KY An, SZ Jiang, ZX Wei et al. Advances in oxide semiconductors for surface enhanced Raman scattering. Appl Mater Today, 101563(2022).

    [6] SY Ding, EM You, ZQ Tian, M Moskovits. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev, 4042-4076(2017).

    [7] YY Zhao, XL Ren, ML Zheng, F Jin, J Liu et al. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron Adv, 200101(2021).

    [8] SW Li, P Miao, YY Zhang, J Wu, B Zhang et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv Mater, 2000086(2021).

    [9] C Zhan, XJ Chen, YF Huang, DY Wu, ZQ Tian. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced raman spectroscopy. Acc Chem Res, 2784-2792(2019).

    [10] P Kambhampati, CM Child, MC Foster, A Campion. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J Chem Phys, 5013-5026(1998).

    [11] N Zhang, LM Tong, J Zhang. Graphene-based enhanced raman scattering toward analytical applications. Chem Mater, 6426-6435(2016).

    [12] XT Wang, WX Shi, SX Wang, HW Zhao, J Lin et al. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J Am Chem Soc, 5856-5862(2019).

    [13] ZH Zheng, S Cong, WB Gong, JN Xuan, GH Li et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Commun, 1993(2017).

    [14] MZ Li, YJ Wei, XC Fan, GQ Li, Q Hao et al. Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Res, 637-643(2022).

    [15] YS Peng, CL Lin, L Long, T Masaki, M Tang et al. Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett, 52(2021).

    [16] X Tang, XC Fan, J Zhou, S Wang, MZ Li et al. Alloy engineering allows on-demand design of ultrasensitive monolayer semiconductor SERS substrates. Nano Lett, 7037-7045(2023).

    [17] H Xu, LM Xie, HL Zhang, J Zhang. Effect of graphene fermi level on the raman scattering intensity of molecules on graphene. ACS Nano, 5338-5344(2011).

    [18] H Xu, YB Chen, WG Xu, HL Zhang, J Kong et al. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. Small, 2945-2952(2011).

    [19] SM Feng, Santos MC dos, BR Carvalho, RT Lv, Q Li et al. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Sci Adv, e1600322(2016).

    [20] J Seo, J Lee, Y Kim, D Koo, G Lee et al. Ultrasensitive plasmon-free surface-enhanced raman spectroscopy with femtomolar detection limit from 2D van der waals heterostructure. Nano Lett, 1620-1630(2020).

    [21] C Liang, ZA Lu, M Zheng, MX Chen, YY Zhang et al. Band structure engineering within two-dimensional borocarbonitride nanosheets for surface-enhanced raman scattering. Nano Lett, 6590-6598(2022).

    [22] MZ Li, YJ Wei, XC Fan, GQ Li, X Tang et al. VSe2–xOx@Pd sensor for operando self-monitoring of palladium-catalyzed reactions. JACS Au, 468-475(2023).

    [23] L Zhou, L Pusey-Nazzaro, GH Ren, LG Chen, LY Liu et al. Photoactive control of surface-enhanced raman scattering with reduced graphene oxide in gas atmosphere. ACS Nano, 577-587(2022).

    [24] HJ Fang, C Xu, J Ding, Q Li, JL Sun et al. Self-powered ultrabroadband photodetector monolithically integrated on a PMN-PT ferroelectric single crystal. Acs Appl Mater Interfaces, 32934-32939(2016).

    [25] S Pandya, J Wilbur, J Kim, R Gao, A Dasgupta et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater, 432-438(2018).

    [26] R Zheng, MY Yan, C Li, SQ Yin, WD Chen et al. Pyroelectric effect mediated infrared photoresponse in Bi2Te3/Pb(Mg1/3Nb2/3)O3-PbTiO3 optothermal ferroelectric field-effect transistors. Nanoscale, 20657-20662(2021).

    [27] MH Deng, ZP Ren, HB Zhang, ZQ Li, CL Xue et al. Unamplified and real-time label-free miRNA-21 detection using solution-gated graphene transistors in prostate cancer diagnosis. Adv Sci, 2205886(2023).

    [28] A Romagnoli, M D'Agostino, E Pavoni, C Ardiccioni, S Motta et al. SARS-CoV-2 multi-variant rapid detector based on graphene transistor functionalized with an engineered dimeric ACE2 receptor. Nano Today, 101729(2023).

    [29] L Zhao, G Rosati, A Piper, Carvalho Castro e Silva C de, L Hu et al. Laser reduced graphene oxide electrode for pathogenic escherichia coli detection. ACS Appl Mater Interfaces, 9024-9033(2023).

    [30] HY Guan, JY Hong, XL Wang, JY Ming, ZL Zhang et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv Opt Mater, 2100245(2021).

    [31] KK Gopalan, D Janner, S Nanot, R Parret, MB Lundeberg et al. Mid-infrared pyroresistive graphene detector on LiNbO3. Adv Opt Mater, 1600723(2017).

    [32] YY Lu, G Yang, YJ Shen, HY Yang, KC Xu. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett, 150(2022).

    [33] X Ling, LM Xie, Y Fang, H Xu, HL Zhang et al. Can graphene be used as a substrate for raman enhancement?. Nano Lett, 553-561(2010).

    [34] Z Li, SZ Jiang, YY Huo, TY Ning, AH Liu et al. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale, 5897-5905(2018).

    [35] S Almohammed, FY Zhang, BJ Rodriguez, JH Rice. Electric field-induced chemical surface-enhanced raman spectroscopy enhancement from aligned peptide nanotube-graphene oxide templates for universal trace detection of biomolecules. J Phys Chem Lett, 1878-1887(2019).

    [36] TY Zhou, C Xu, WC Ren. Grain-boundary-induced ultrasensitive molecular detection of graphene film. Nano Lett, 9380-9388(2022).

    [37] QZ Hao, SM Morton, B Wang, YH Zhao, L Jensen et al. Tuning surface-enhanced Raman scattering from graphene substrates using the electric field effect and chemical doping. Appl Phys Lett, 011102(2013).

    [38] AHC Neto, F Guinea, NMR Peres, KS Novoselov, AK Geim. The electronic properties of graphene. Rev Mod Phys, 109-162(2009).

    [39] J Gorecki, V Apostolopoulos, JY Ou, S Mailis, N Papasimakis. Optical gating of graphene on photoconductive Fe: LiNbO3. ACS Nano, 5940-5945(2018).

    [40] XZ Sun, Y Chen, DY Zhao, T Taniguchi, K Watanabe et al. Measuring band modulation of MoS2 with ferroelectric gates. Nano Lett, 2114-2120(2023).

    [41] XD Wang, P Wang, JL Wang, WD Hu, XH Zhou et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater, 6575-6581(2015).

    [42] SK Zhang, HX Jiao, XD Wang, Y Chen, HL Wang et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv Funct Mater, 2006156(2020).

    [43] JM Yan, JS Ying, MY Yan, ZC Wang, SS Li et al. Optoelectronic coincidence detection with two-dimensional Bi2O2Se ferroelectric field-effect transistors. Adv Funct Mater, 2103982(2021).

    [44] JW Chen, ST Lo, SC Ho, SS Wong, THY Vu et al. A gate-free monolayer WSe2 pn diode. Nat Commun, 3143(2018).

    [45] Y Yang, WX Guo, KC Pradel, G Zhu, YS Zhou et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett, 2833-2838(2012).

    [46] N Ma, KW Zhang, Y Yang. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv Mater, 1703694(2017).

    [47] N Ma, Y Yang. Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect. Nano Energy, 352-359(2017).

    [48] B Das, R Voggu, CS Rout, CNR Rao. Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun, 5155-5157(2008).

    [49] C Baeumer, D Saldana-Greco, JMP Martirez, AM Rappe, M Shim et al. Ferroelectrically driven spatial carrier density modulation in graphene. Nat Commun, 6136(2015).

    [50] DM Liu, WC Yi, YL Fu, QH Kong, GC Xi. In situ surface restraint-induced synthesis of transition-metal nitride ultrathin nanocrystals as ultrasensitive sers substrate with ultrahigh durability. ACS Nano, 13123-13133(2022).

    [51] YC Ge, F Wang, Y Yang, Y Xu, Y Ye et al. Atomically thin TaSe2 film as a high-performance substrate for surface-enhanced raman scattering. Small, 2107027(2022).

    [52] Y Liu, J Guo, EB Zhu, L Liao, SJ Lee et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 696-700(2018).

    [53] JR Lombardi, RL Birke. A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C, 5605-5617(2008).

    [54] M Jablan, H Buljan, M Soljačić. Plasmonics in graphene at infrared frequencies. Phys Rev B, 245435(2009).

    [55] JR Lombardi, RL Birke. The theory of surface-enhanced Raman scattering. J Chem Phys, 144704(2012).

    [56] HY Li, CR Bowen, Y Yang. Phase transition enhanced pyroelectric nanogenerators for self-powered temperature sensors. Nano Energy, 107657(2022).

    [57] Y Yang, SH Wang, Y Zhang, ZL Wang. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett, 6408-6413(2012).

    [58] S Bai, D Serien, AM Hu, K Sugioka. 3D microfluidic surface-enhanced raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv Funct Mater, 1706262(2018).

    [59] J Wu, YJ Du, CY Wang, S Bai, T Zhang et al. Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate. Appl Surf Sci, 583-590(2019).

    [60] MM Chen, ZH Liu, BH Su, RJ Hu, FF Fu et al. High-performance hydrogel SERS chips with tunable localized surface plasmon resonance for coordinated electromagnetic enhancement with chemical enhancement. Adv Opt Mater, 2202852(2023).

    [61] S Cong, XH Liu, YX Jiang, W Zhang, ZG Zhao. Surface enhanced raman scattering revealed by interfacial charge-transfer transitions. Innovation, 100051(2020).

    Tools

    Get Citation

    Copy Citation Text

    Mingrui Shao, Chang Ji, Jibing Tan, Baoqiang Du, Xiaofei Zhao, Jing Yu, Baoyuan Man, Kaichen Xu, Chao Zhang, Zhen Li. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response[J]. Opto-Electronic Advances, 2023, 6(11): 230094

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 2, 2023

    Accepted: Aug. 29, 2023

    Published Online: Mar. 13, 2024

    The Author Email: Xu Kaichen (KCXu), Zhang Chao (CZhang), Li Zhen (ZLi)

    DOI:10.29026/oea.2023.230094

    Topics