Matter and Radiation at Extremes, Volume. 7, Issue 2, 026902(2022)

Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries

C. Samulski1, B. Srinivasan1, M. J.-E. Manuel2, R. Masti1, J. P. Sauppe3, and J. Kline3
Author Affiliations
  • 1Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA
  • 2General Atomics, P.O. Box 85608, San Diego, California 92186, USA
  • 3Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
  • show less
    References(50)

    [1] B. G.Logan, M. A.Rhodes, L. J.Perkins, D. J.Strozzi, D. T.Blackfield, D. D.-M.Ho, G. B.Zimmerman, S. A.Hawkins. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion. Phys. Plasmas, 24, 062708(2017).

    [2] O. V.Gotchev, D. D.Meyerhofer, C. K.Li, F. H.Séguin, M. J.-E.Manuel, O.Polomarov, J. R.Rygg, J. A.Frenje, J. P.Knauer, R. D.Petrasso, P. Y.Chang, R.Betti. Compressing magnetic fields with high-energy lasers. Phys. Plasmas, 17, 056318(2010).

    [3] D. D.Meyerhofer, P. W.McKenty, P. B.Radha, W. L.Kruer, D. T.Michel, A. J.Schmitt, R. L.McCrory, S.Skupsky, R.Betti, J. M.Soures, D. R.Harding, A. A.Solodov, J. P.Knauer, K.Tanaka, C.Stoeckl, T. J. B.Collins, J. D.Sethian, R. W.Short, W.Theobald, J. A.Delettrez, S. X.Hu, S. P.Regan, K. S.Anderson, J. F.Myatt, T. C.Sangster, V. N.Goncharov, J. A.Marozas, W.Seka, T. R.Boehly, J. D.Zuegel, A. V.Maximov, R. S.Craxton. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [4] J. D.Zuegel, J.Frenje, J. A.Delettrez, R. E.Bahr, M. D.Wittman, R. P. J.Town, B.Yaakobi, P. B.Radha, R. L.Keck, L. D.Lund, T. R.Boehly, D. G.Hicks, R.Epstein, R. L.McCrory, S.Skupsky, O. V.Gotchev, J. H.Kelly, W. R.Donaldson, V. N.Goncharov, V. Y.Glebov, W.Seka, S. P.Regan, C.Sorce, R. Q.Gram, J. P.Knauer, T. J. B.Collins, V. A.Smalyuk, S. F. B.Morse, C.Stoeckl, R.Betti, F.Séguin, P. A.Jaanimagi, R. S.Craxton, S. J.Loucks, R. D.Petrasso, J. M.Soures, D. D.Meyerhofer, F. J.Marshall, C. K.Li, S.Roberts, P. W.McKenty, D. R.Harding. OMEGA ICF experiments and preparation for direct drive ignition on NIF. Nucl. Fusion, 41, 1413-1422(2001).

    [5] G. I.Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London, Ser. A, 201, 192-196(1950).

    [6] T.Rayleigh. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., s1-14, 170-177(1882).

    [7] M. J.-E.Manuel, F. H.Séguin, J.Frenje, R.Betti, J. D.Hager, D. D.Meyerhofer, C. K.Li, S. X.Hu, R. D.Petrasso, D. T.Casey. First measurements of Rayleigh–Taylor-induced magnetic fields in laser-produced plasmas. Phys. Rev. Lett., 108, 255006(2012).

    [8] X.-Z.Tang, G.Dimonte, B.Srinivasan. Magnetic field generation in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett., 108, 165002(2012).

    [9] B.Srinivasan, X.-Z.Tang. Mechanism for magnetic field generation and growth in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Plasmas, 19, 082703(2012).

    [10] B.Srinivasan, X.-Z.Tang. The mitigating effect of magnetic fields on Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Plasmas, 20, 056307(2013).

    [11] X.-Z.Tang, B.Srinivasan. Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization. Europhys. Lett, 107, 65001(2014).

    [12] S.Pikuz, S. R.Klein, M. J.-E.Manuel, B.Albertazzi, J. C.Williams, G.Rigon, F.Kroll, A.Casner, M.Koenig, C. C.Kuranz, B.Khiar, P.Mabey, T.Michel, F.-E.Brack. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas. Matter Radiat. Extremes, 6, 026904(2021).

    [13] J. M.Koning, A. L.Kritcher, S. W.Haan, S. M.Sepke, J. L.Milovich, C. R.Weber, M. M.Marinak, M. J.Edwards, M. V.Patel, D. S.Clark, P. K.Patel, C. R.Schroeder, B. A.Hammel. Modeling and projecting implosion performance for the National Ignition Facility. Nucl. Fusion, 59, 032008(2018).

    [14] A. E.Pak, D. T.Casey, C. R.Weber, P. K.Patel, A. L.Kritcher, S. M.Sepke, H. F.Robey, M. V.Patel, M. J.Edwards, C. R.Schroeder, B. A.Hammel, J. L.Milovich, L. P.Masse, D. S.Clark, D. D.Ho, D. H.Munro, M. M.Marinak, O. S.Jones, J. M.Koning. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Phys. Plasmas, 26, 050601(2019).

    [15] C. H.Aldrich, J. M.Campbell, R. M.Rauenzahn, C. A.Wingate, B. M.Haines. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions. Phys. Plasmas, 24, 052701(2017).

    [16] J. P.Sauppe, E. N.Loomis, P. A.Bradley, S. H.Batha, J. L.Kline, S.Palaniyappan, B. M.Haines. Modeling of direct-drive cylindrical implosion experiments with an Eulerian radiation-hydrodynamics code. Phys. Plasmas, 26, 042701(2019).

    [17] D. D.Meyerhofer, P. Y.Chang, J. P.Knauer, F. H.Séguin, M.Hohenberger, R. D.Petrasso, R.Betti, F. J.Marshall, G.Fiksel. Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett., 107, 035006(2011).

    [18] D. D.Meyerhofer, V. N.Goncharov, S.Skupsky, R.Betti, K.Anderson, R. P. J.Town, R. L.McCrory. Deceleration phase of inertial confinement fusion implosions. Phys. Plasmas, 9, 2277-2286(2002).

    [19] A.Bose, R.Betti, K. M.Woo, R.Nora. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability. Phys. Plasmas, 22, 072702(2015).

    [20] E. N.Loomis, J. P.Sauppe, J. L.Kline, S.Palaniyappan, B.Srinivasan, K. A.Flippo. Using cylindrical implosions to investigate hydrodynamic instabilities in convergent geometry. Matter Radiat. Extremes, 4, 065403(2019).

    [21] J. L.Kline, P. A.Bradley, O. L.Landen, D.Shvarts, S. H.Batha, J. P.Sauppe, S.Palaniyappan, E. N.Loomis, K. A.Flippo, B. J.Tobias. Design of cylindrical implosion experiments to demonstrate scale-invariant Rayleigh–Taylor instability growth. High Energy Density Phys., 36, 100831(2020).

    [22] K. A.Flippo, J. L.Kline, O. L.Landen, J. P.Sauppe, P. A.Bradley, E. N.Loomis, D.Shvarts, B. J.Tobias, S.Palaniyappan, S. H.Batha. Demonstration of scale-invariant Rayleigh–Taylor instability growth in laser-driven cylindrical implosion experiments. Phys. Rev. Lett., 124, 185003(2020).

    [23] K. A.Flippo, C. F.Kawaguchi, J. P.Sauppe, A. B.Zylstra, E.Malka, D.Shvarts, B. J.Tobias, O. L.Landen, S. H.Batha, S.Palaniyappan. Hydro-scaling of direct-drive cylindrical implosions at the OMEGA and the National Ignition Facility. Phys. Plasmas, 27, 042708(2020).

    [24] P.Graham, B.Thomas, J.Edwards, N. M.Hoffman, A.Richard, C. W.Barnes, S.Rothman, J. B.Beck, W. W.Hsing, D.Galmiche. Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions. Phys. Plasmas, 4, 1832-1840(1997).

    [25] B.Fryxell, M. J.Grosskopf, A.Budde, C. C.Kuranz, T.Plewa, R. P.Drake, J. F.Hansen, J.Knauer, A. R.Miles, N.Hearn. Spike morphology in blast-wave-driven instability experiments. Phys. Plasmas, 17, 052709(2010).

    [26] A.Budde, T.Donajkowski, H. F.Robey, A. R.Miles, B. A.Remington, T.Plewa, M. J.Grosskopf, C. C.Kuranz, J. R.Ditmar, D.Arnett, C.Sorce, C.Krauland, R. P.Drake, J. P.Knauer, K. L.Killebrew, D. C.Marion, N. C.Hearn, A. B. R.Cooper, A. J.Visco. Three-dimensional blast-wave-driven Rayleigh–Taylor instability and the effects of long-wavelength modes. Phys. Plasmas, 16, 056310(2009).

    [27] B. A.Remington, G.Dimonte, J. D.Kilkenny, M. M.Marinak, S. V.Weber, R. J.Wallace, S. W.Haan. Single-mode and multimode Rayleigh–Taylor experiments on Nova. Phys. Plasmas, 2, 241-255(1995).

    [28] V. A.Smalyuk, D. T.Casey, D. S.Clark, B. A.Remington, C. C.Kuranz, R. M.Cavallo, S. R.Nagel, A. R.Miles, H.-S.Park, K. S.Raman, C. M.Huntington. Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility. Proc. Natl. Acad. Sci. U. S. A., 116, 18233-18238(2019).

    [29] C. C.Kuranz, R. J.Wallace, A. R.Miles, M. J.Edwards, D. R.Leibrandt, M. A.Blackburn, D.Arnett, H.Louis, R. P.Drake, B. A.Remington, E. C.Harding, T. S.Perry, H. F.Robey, J. P.Knauer. Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface. Phys. Plasmas, 11, 2829-2837(2004).

    [30] H. F.Robey, C. C.Kuranz, D.Arnett, O.Hurricane, N. C.Swisher, B. A.Remington, S. I.Abarzhi. Rayleigh–Taylor mixing in supernova experiments. Phys. Plasmas, 22, 102707(2015).

    [31] R. D.Petrasso, D. D.Meyerhofer, T.Plewa, D. T.Casey, M.Flaig, F. H.Séguin, J.Hager, R.Betti, V.Smalyuk, C. K.Li, J. A.Frenje, M. J.-E.Manuel, S. X.Hu. Collisional effects on Rayleigh–Taylor-induced magnetic fields. Phys. Plasmas, 22, 056305(2015).

    [32] M.Flaig, T.Plewa. Self-generated magnetic fields in blast-wave driven Rayleigh–Taylor experiments. High Energy Density Phys., 17, 46-51(2015).

    [33] R. P.Drake, H.-S.Park, M.Flaig, C.Kuranz, M.Grosskopf, P. A.Keiter, T.Plewa. Design of a supernova-relevant Rayleigh–Taylor experiment on the National Ignition Facility. I. Planar target design and diagnostics. High Energy Density Phys., 12, 35-45(2014).

    [34] M. J.Grosskopf, A. R.Miles, R. P.Drake, J.Knauer, B.Fryxell, T.Plewa, N.Hearn, J. F.Hansen, A.Budde, C. C.Kuranz. The possible effects of magnetic fields on laser experiments of Rayleigh–Taylor instabilities. High Energy Density Phys., 6, 162-165(2010).

    [35] A. B.Sefkow, M. C.Herrmann, D. B.Sinars, M. E.Cuneo, R. A.Vesey, K. J.Peterson, D. C.Rovang, S. A.Slutz. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas, 17, 056303(2010).

    [36] E. G.Harris. Rayleigh–Taylor instabilities of a collapsing cylindrical shell in a magnetic field. Phys. Fluids, 5, 1057-1062(1962).

    [37] K. J.Peterson, C.Nakhleh, M. E.Cuneo, M. C.Herrmann, D. B.Sinars, R. D.McBride, R. A.Vesey, B. E.Blue, K.Killebrew, S. A.Slutz. Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility. Phys. Rev. Lett., 105, 185001(2010).

    [38] D.Sinars, T.Awe, D.Ryutov, R.McBride, S.Slutz, S.Hansen, K.Peterson. Effect of axial magnetic flux compression on the magnetic Rayleigh–Taylor instability (theory). AIP Conf. Proc., 1639, 63-66(2014).

    [39] A. C.Owen, M. R.Martin, S. A.Slutz, D. C.Lamppa, T. J.Awe, D. B.Sinars, C. A.Jennings, D. C.Rovang, R. D.McBride, M. E.Cuneo. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field. Phys. Rev. Lett., 111, 235005(2013).

    [40] J. M.Stone, M. L.Norman, B.-I.Jun. A numerical study of Rayleigh–Taylor instability in magnetic fluids. Astrophys. J., 453, 332(1995).

    [41] B. K.Shivamoggi. Rayleigh–Taylor instability of a compressible plasma in a horizontal magnetic field. Z. Angew. Math. Phys., 33, 693-697(1982).

    [42] T.Boehly, J. B.Beck, D.Bradley, C. W.Barnes, N. M.Hoffman, J. A.Oertel, P.Jaanimagi, J.Knauer, R. G.Watt, D. L.Tubbs. Cylindrical implosion experiments using laser direct drive. Phys. Plasmas, 6, 2095-2104(1999).

    [43] K. W.Parker, S. D.Rothman, N. E.Lanier, C. J.Horsfield, G. R.Magelssen, S. H.Batha, J. R.Fincke, R. M.Hueckstaedt. Postponement of saturation of the Richtmyer–Meshkov instability in a convergent geometry. Phys. Rev. Lett., 93, 115003(2004).

    [44] G. R.Magelssen, S. H.Batha, C. J.Horsfield, S. D.Rothman, N. E.Lanier, J. R.Fincke, K. W.Parker. Validation of the radiation hydrocode RAGE against defect-driven mix experiments in a compressible, convergent, and miscible plasma system. Phys. Plasmas, 13, 042703(2006).

    [45] S. A.Letzring, F. J.Marshall, J. P.Knauer, W.Seka, C. P.Verdon, S. A.Kumpan, T. R.Boehly, J. M.Soures, R. S.Craxton, D. L.Brown, T. J.Kessler, S. F. B.Morse, S. J.Loucks, J. H.Kelly, R. L.Keck, R. L.McCrory. Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495-506(1997).

    [46] E. I.Moses. Ignition on the National Ignition Facility: A path towards inertial fusion energy. Nucl. Fusion, 49, 104022(2009).

    [47] H.Tufo, K.Olson, D. Q.Lamb, B.Fryxell, R.Rosner, P.MacNeice, J. W.Truran, M.Zingale, F. X.Timmes, P.Ricker. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser., 131, 273(2000).

    [48] M.Fatenejad, N.Flocke, D. Q.Lamb, C.Graziani, D.Lee, P.Tzeferacos, K.Weide, A.Scopatz, G.Gregori, J.Meinecke. FLASH MHD simulations of experiments that study shock-generated magnetic fields. High Energy Density Phys., 17, 24-31(2015).

    [49] (2019).

    [50] L.Spitzer. Physics of Fully Ionized Gases(2006).

    Tools

    Get Citation

    Copy Citation Text

    C. Samulski, B. Srinivasan, M. J.-E. Manuel, R. Masti, J. P. Sauppe, J. Kline. Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries[J]. Matter and Radiation at Extremes, 2022, 7(2): 026902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Radiation and Hydrodynamics

    Received: Jul. 2, 2021

    Accepted: Jan. 16, 2022

    Published Online: Apr. 6, 2022

    The Author Email:

    DOI:10.1063/5.0062168

    Topics