[1] D. T.Blackfield, S. A.Hawkins, D. D.-M.Ho, B. G.Logan, L. J.Perkins, M. A.Rhodes, D. J.Strozzi, G. B.Zimmerman. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion. Phys. Plasmas, 24, 062708(2017).
[2] R.Betti, P. Y.Chang, J. A.Frenje, O. V.Gotchev, J. P.Knauer, C. K.Li, M. J.-E.Manuel, D. D.Meyerhofer, R. D.Petrasso, O.Polomarov, J. R.Rygg, F. H.Séguin. Compressing magnetic fields with high-energy lasers. Phys. Plasmas, 17, 056318(2010).
[3] K. S.Anderson, R.Betti, T. R.Boehly, T. J. B.Collins, R. S.Craxton, J. A.Delettrez, V. N.Goncharov, D. R.Harding, S. X.Hu, J. P.Knauer, W. L.Kruer, J. A.Marozas, A. V.Maximov, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, D. T.Michel, J. F.Myatt, P. B.Radha, S. P.Regan, T. C.Sangster, A. J.Schmitt, W.Seka, J. D.Sethian, R. W.Short, S.Skupsky, A. A.Solodov, J. M.Soures, C.Stoeckl, K.Tanaka, W.Theobald, J. D.Zuegel. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).
[4] R. E.Bahr, R.Betti, T. R.Boehly, T. J. B.Collins, R. S.Craxton, J. A.Delettrez, W. R.Donaldson, R.Epstein, J.Frenje, V. Y.Glebov, V. N.Goncharov, O. V.Gotchev, R. Q.Gram, D. R.Harding, D. G.Hicks, P. A.Jaanimagi, R. L.Keck, J. H.Kelly, J. P.Knauer, C. K.Li, S. J.Loucks, L. D.Lund, F. J.Marshall, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, S. F. B.Morse, R. D.Petrasso, P. B.Radha, S. P.Regan, S.Roberts, F.Séguin, W.Seka, S.Skupsky, V. A.Smalyuk, C.Sorce, J. M.Soures, C.Stoeckl, R. P. J.Town, M. D.Wittman, B.Yaakobi, J. D.Zuegel. OMEGA ICF experiments and preparation for direct drive ignition on NIF. Nucl. Fusion, 41, 1413-1422(2001).
[5] G. I.Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London, Ser. A, 201, 192-196(1950).
[6] T.Rayleigh. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., s1-14, 170-177(1882).
[7] R.Betti, D. T.Casey, J.Frenje, J. D.Hager, S. X.Hu, C. K.Li, M. J.-E.Manuel, D. D.Meyerhofer, R. D.Petrasso, F. H.Séguin. First measurements of Rayleigh–Taylor-induced magnetic fields in laser-produced plasmas. Phys. Rev. Lett., 108, 255006(2012).
[8] G.Dimonte, B.Srinivasan, X.-Z.Tang. Magnetic field generation in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett., 108, 165002(2012).
[9] B.Srinivasan, X.-Z.Tang. Mechanism for magnetic field generation and growth in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Plasmas, 19, 082703(2012).
[10] B.Srinivasan, X.-Z.Tang. The mitigating effect of magnetic fields on Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Plasmas, 20, 056307(2013).
[11] B.Srinivasan, X.-Z.Tang. Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization. Europhys. Lett, 107, 65001(2014).
[12] B.Albertazzi, F.-E.Brack, A.Casner, B.Khiar, S. R.Klein, M.Koenig, F.Kroll, C. C.Kuranz, P.Mabey, M. J.-E.Manuel, T.Michel, S.Pikuz, G.Rigon, J. C.Williams. On the study of hydrodynamic instabilities in the presence of background magnetic fields in high-energy-density plasmas. Matter Radiat. Extremes, 6, 026904(2021).
[13] D. S.Clark, M. J.Edwards, S. W.Haan, B. A.Hammel, J. M.Koning, A. L.Kritcher, M. M.Marinak, J. L.Milovich, M. V.Patel, P. K.Patel, C. R.Schroeder, S. M.Sepke, C. R.Weber. Modeling and projecting implosion performance for the National Ignition Facility. Nucl. Fusion, 59, 032008(2018).
[14] D. T.Casey, D. S.Clark, M. J.Edwards, B. A.Hammel, D. D.Ho, O. S.Jones, J. M.Koning, A. L.Kritcher, M. M.Marinak, L. P.Masse, J. L.Milovich, D. H.Munro, A. E.Pak, M. V.Patel, P. K.Patel, H. F.Robey, C. R.Schroeder, S. M.Sepke, C. R.Weber. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Phys. Plasmas, 26, 050601(2019).
[15] C. H.Aldrich, J. M.Campbell, B. M.Haines, R. M.Rauenzahn, C. A.Wingate. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions. Phys. Plasmas, 24, 052701(2017).
[16] S. H.Batha, P. A.Bradley, B. M.Haines, J. L.Kline, E. N.Loomis, S.Palaniyappan, J. P.Sauppe. Modeling of direct-drive cylindrical implosion experiments with an Eulerian radiation-hydrodynamics code. Phys. Plasmas, 26, 042701(2019).
[17] R.Betti, P. Y.Chang, G.Fiksel, M.Hohenberger, J. P.Knauer, F. J.Marshall, D. D.Meyerhofer, R. D.Petrasso, F. H.Séguin. Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett., 107, 035006(2011).
[18] K.Anderson, R.Betti, V. N.Goncharov, R. L.McCrory, D. D.Meyerhofer, S.Skupsky, R. P. J.Town. Deceleration phase of inertial confinement fusion implosions. Phys. Plasmas, 9, 2277-2286(2002).
[19] R.Betti, A.Bose, R.Nora, K. M.Woo. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability. Phys. Plasmas, 22, 072702(2015).
[20] K. A.Flippo, J. L.Kline, E. N.Loomis, S.Palaniyappan, J. P.Sauppe, B.Srinivasan. Using cylindrical implosions to investigate hydrodynamic instabilities in convergent geometry. Matter Radiat. Extremes, 4, 065403(2019).
[21] S. H.Batha, P. A.Bradley, K. A.Flippo, J. L.Kline, O. L.Landen, E. N.Loomis, S.Palaniyappan, J. P.Sauppe, D.Shvarts, B. J.Tobias. Design of cylindrical implosion experiments to demonstrate scale-invariant Rayleigh–Taylor instability growth. High Energy Density Phys., 36, 100831(2020).
[22] S. H.Batha, P. A.Bradley, K. A.Flippo, J. L.Kline, O. L.Landen, E. N.Loomis, S.Palaniyappan, J. P.Sauppe, D.Shvarts, B. J.Tobias. Demonstration of scale-invariant Rayleigh–Taylor instability growth in laser-driven cylindrical implosion experiments. Phys. Rev. Lett., 124, 185003(2020).
[23] S. H.Batha, K. A.Flippo, C. F.Kawaguchi, O. L.Landen, E.Malka, S.Palaniyappan, J. P.Sauppe, D.Shvarts, B. J.Tobias, A. B.Zylstra. Hydro-scaling of direct-drive cylindrical implosions at the OMEGA and the National Ignition Facility. Phys. Plasmas, 27, 042708(2020).
[24] C. W.Barnes, J. B.Beck, J.Edwards, D.Galmiche, P.Graham, N. M.Hoffman, W. W.Hsing, A.Richard, S.Rothman, B.Thomas. Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions. Phys. Plasmas, 4, 1832-1840(1997).
[25] A.Budde, R. P.Drake, B.Fryxell, M. J.Grosskopf, J. F.Hansen, N.Hearn, J.Knauer, C. C.Kuranz, A. R.Miles, T.Plewa. Spike morphology in blast-wave-driven instability experiments. Phys. Plasmas, 17, 052709(2010).
[26] D.Arnett, A.Budde, A. B. R.Cooper, J. R.Ditmar, T.Donajkowski, R. P.Drake, M. J.Grosskopf, N. C.Hearn, K. L.Killebrew, J. P.Knauer, C.Krauland, C. C.Kuranz, D. C.Marion, A. R.Miles, T.Plewa, B. A.Remington, H. F.Robey, C.Sorce, A. J.Visco. Three-dimensional blast-wave-driven Rayleigh–Taylor instability and the effects of long-wavelength modes. Phys. Plasmas, 16, 056310(2009).
[27] G.Dimonte, S. W.Haan, J. D.Kilkenny, M. M.Marinak, B. A.Remington, R. J.Wallace, S. V.Weber. Single-mode and multimode Rayleigh–Taylor experiments on Nova. Phys. Plasmas, 2, 241-255(1995).
[28] D. T.Casey, R. M.Cavallo, D. S.Clark, C. M.Huntington, C. C.Kuranz, A. R.Miles, S. R.Nagel, H.-S.Park, K. S.Raman, B. A.Remington, V. A.Smalyuk. Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility. Proc. Natl. Acad. Sci. U. S. A., 116, 18233-18238(2019).
[29] D.Arnett, M. A.Blackburn, R. P.Drake, M. J.Edwards, E. C.Harding, J. P.Knauer, C. C.Kuranz, D. R.Leibrandt, H.Louis, A. R.Miles, T. S.Perry, B. A.Remington, H. F.Robey, R. J.Wallace. Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface. Phys. Plasmas, 11, 2829-2837(2004).
[30] S. I.Abarzhi, D.Arnett, O.Hurricane, C. C.Kuranz, B. A.Remington, H. F.Robey, N. C.Swisher. Rayleigh–Taylor mixing in supernova experiments. Phys. Plasmas, 22, 102707(2015).
[31] R.Betti, D. T.Casey, M.Flaig, J. A.Frenje, J.Hager, S. X.Hu, C. K.Li, M. J.-E.Manuel, D. D.Meyerhofer, R. D.Petrasso, T.Plewa, F. H.Séguin, V.Smalyuk. Collisional effects on Rayleigh–Taylor-induced magnetic fields. Phys. Plasmas, 22, 056305(2015).
[32] M.Flaig, T.Plewa. Self-generated magnetic fields in blast-wave driven Rayleigh–Taylor experiments. High Energy Density Phys., 17, 46-51(2015).
[33] R. P.Drake, M.Flaig, M.Grosskopf, P. A.Keiter, C.Kuranz, H.-S.Park, T.Plewa. Design of a supernova-relevant Rayleigh–Taylor experiment on the National Ignition Facility. I. Planar target design and diagnostics. High Energy Density Phys., 12, 35-45(2014).
[34] A.Budde, R. P.Drake, B.Fryxell, M. J.Grosskopf, J. F.Hansen, N.Hearn, J.Knauer, C. C.Kuranz, A. R.Miles, T.Plewa. The possible effects of magnetic fields on laser experiments of Rayleigh–Taylor instabilities. High Energy Density Phys., 6, 162-165(2010).
[35] M. E.Cuneo, M. C.Herrmann, K. J.Peterson, D. C.Rovang, A. B.Sefkow, D. B.Sinars, S. A.Slutz, R. A.Vesey. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas, 17, 056303(2010).
[36] E. G.Harris. Rayleigh–Taylor instabilities of a collapsing cylindrical shell in a magnetic field. Phys. Fluids, 5, 1057-1062(1962).
[37] B. E.Blue, M. E.Cuneo, M. C.Herrmann, K.Killebrew, R. D.McBride, C.Nakhleh, K. J.Peterson, D. B.Sinars, S. A.Slutz, R. A.Vesey. Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility. Phys. Rev. Lett., 105, 185001(2010).
[38] T.Awe, S.Hansen, R.McBride, K.Peterson, D.Ryutov, D.Sinars, S.Slutz. Effect of axial magnetic flux compression on the magnetic Rayleigh–Taylor instability (theory). AIP Conf. Proc., 1639, 63-66(2014).
[39] T. J.Awe, M. E.Cuneo, C. A.Jennings, D. C.Lamppa, M. R.Martin, R. D.McBride, A. C.Owen, D. C.Rovang, D. B.Sinars, S. A.Slutz. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field. Phys. Rev. Lett., 111, 235005(2013).
[40] B.-I.Jun, M. L.Norman, J. M.Stone. A numerical study of Rayleigh–Taylor instability in magnetic fluids. Astrophys. J., 453, 332(1995).
[41] B. K.Shivamoggi. Rayleigh–Taylor instability of a compressible plasma in a horizontal magnetic field. Z. Angew. Math. Phys., 33, 693-697(1982).
[42] C. W.Barnes, J. B.Beck, T.Boehly, D.Bradley, N. M.Hoffman, P.Jaanimagi, J.Knauer, J. A.Oertel, D. L.Tubbs, R. G.Watt. Cylindrical implosion experiments using laser direct drive. Phys. Plasmas, 6, 2095-2104(1999).
[43] S. H.Batha, J. R.Fincke, C. J.Horsfield, R. M.Hueckstaedt, N. E.Lanier, G. R.Magelssen, K. W.Parker, S. D.Rothman. Postponement of saturation of the Richtmyer–Meshkov instability in a convergent geometry. Phys. Rev. Lett., 93, 115003(2004).
[44] S. H.Batha, J. R.Fincke, C. J.Horsfield, N. E.Lanier, G. R.Magelssen, K. W.Parker, S. D.Rothman. Validation of the radiation hydrocode RAGE against defect-driven mix experiments in a compressible, convergent, and miscible plasma system. Phys. Plasmas, 13, 042703(2006).
[45] T. R.Boehly, D. L.Brown, R. S.Craxton, R. L.Keck, J. H.Kelly, T. J.Kessler, J. P.Knauer, S. A.Kumpan, S. A.Letzring, S. J.Loucks, F. J.Marshall, R. L.McCrory, S. F. B.Morse, W.Seka, J. M.Soures, C. P.Verdon. Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495-506(1997).
[46] E. I.Moses. Ignition on the National Ignition Facility: A path towards inertial fusion energy. Nucl. Fusion, 49, 104022(2009).
[47] B.Fryxell, D. Q.Lamb, P.MacNeice, K.Olson, P.Ricker, R.Rosner, F. X.Timmes, J. W.Truran, H.Tufo, M.Zingale. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser., 131, 273(2000).
[48] M.Fatenejad, N.Flocke, C.Graziani, G.Gregori, D. Q.Lamb, D.Lee, J.Meinecke, A.Scopatz, P.Tzeferacos, K.Weide. FLASH MHD simulations of experiments that study shock-generated magnetic fields. High Energy Density Phys., 17, 24-31(2015).
[50] L.Spitzer. Physics of Fully Ionized Gases(2006).