Optical Communication Technology, Volume. 45, Issue 11, 53(2021)

Survey of physical layer key technologies for next generation optical access network

FENG Nan1 and LIAN Bin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(49)

    [1] [1] HARSTEAD E, VAN V D, HOUTSMA V, et al. Technology roadmap for time-division multiplexed passive optical networks(TDM PONs) [J]. Journal of Lightwave Technology, 2018, 37(2): 657-664.

    [2] [2] HOUTSMA V, MAHADEVAN A, KANEDA N, et al. Transceiver technologies for passive optical networks: past, present, and future [Invited Tutorial][J]. Journal of Optical Communications and Networking, 2021, 13(1): A44-A55.

    [3] [3] XUE L, YI L, HU W, et al. Optics-simplified DSP for 50 Gb/s PON downstream transmission using 10Gb/s optical devices[J]. Journal of Lightwave Technology, 2020, 38(3): 583-589.

    [4] [4] DONG Z, ZHAO X, CHEN Y, et al. A low-complexity probabilistic shaping based on bit-weighted distribution matching in DMT-WDM-PON[J]. Optics Express, 2020, 28(15): 21814-21824.

    [5] [5] PAROLARI P, GATTO A, NEUMEYR C, et al. Flexible transmitters based on directly-modulated VCSELs for next generation 50G passive optical networks[J]. Journal of Optical Communications and Networking, 2020, 12(10): D78-D85.

    [6] [6] FENG N, SUN X. Nyquist four-level pulse amplitude modulation scheme(PAM-4) based on hierarchical modulation in IM/DD-TDM PON with hybrid equalization[J]. Optics Communications, 2020, 457: 124609-124609.

    [7] [7] LAM C F, YIN S. Optical Fiber Telecommunications VII[M]. Los Angeles: Academic Press, 2020.

    [8] [8] ROBERTS H. Status of ITU-T Q2/15: new higher speed PON projects [J]. IEEE Communications Standards Magazine, 2020, 4(1): 57-59.

    [9] [9] LI B, ZHANG K, ZHANG D, et al. DSP enabled next generation 50G TDM-PON[J]. Journal of Optical Communications and Networking, 2020, 12(9): D1-D8.

    [10] [10] DESANTI C, DU L, LAM C F, et al. Super-PON: an evolution for access networks[J]. Journal of Optical Communications and Networking, 2020, 12(10): D66-D77.

    [11] [11] WEY J S. The outlook for PON standardization: a tutorial[J]. Journal of Lightwave Technology, 2020, 38(1): 31-42.

    [12] [12] ZHOU L, HE H, ZHANG Y, et al. Enhancement of spectral efficiency and power budget in WDN-PON employing LDPC-coded probabilistic shaping PAM8[J]. IEEE Access, 2020, 8(99): 45766-45773.

    [13] [13] ZHANG J, WANG K, WEI Y, et al. Symmetrical 50Gb/s/λ PAM-4 TDM-PON at O-band supporting 26 dB+ loss budget using low-bandwidth optics and semiconductor optical amplifier[C]//Optical Fiber Communications Conference and Exhibition (OFC), March 8-12, 2020, San Diego, USA. San Diego: IEEE, 2020: 1-3.

    [14] [14] JIN W, SANKOH A, DONG Y, et al. Hybrid SSB OFDM-digital filter multiple access PONs [J]. Journal of Lightwave Technology, 2020, 38(8): 2095-2105.

    [15] [15] LIU B, HAN S, MAO Y, et al. High-security multi-slot chaos encryption with dynamic probability for 16-CAP PON [J]. IEEE Photonics Journal, 2020, 12(3): 1-10.

    [16] [16] VEEN D T V, HOUTSMA V E. Flexible 50G PON based on multi-rate PAM and CAP-4 with user interleaving[C]//45th European Conference on Optical Communication(ECOC), Sept. 22-26, 2019, Dublin, Ireland. Dublin, 2019: 1-3.

    [17] [17] AUPETIT-BERTHELEMOT C, SANYA M F. An IFFT/FFT size efficient improved ACO-OFDM scheme for next-generation passive optical network[C]//European Conference on Networks & Optical Communications(ECOC), June 1-3, 2016, Lisbon, Portugal. Lisbon: IEEE, 2016: 1-3.

    [18] [18] ZHANG J, YU J, WEY J S, et al. SOA pre-amplified 100 Gb/s/λ PAM-4 TDM-PON downstream transmission using 10 Gbps O-band transmitters[J]. Journal of Lightwave Technology, 2020, 38(2): 185-193.

    [19] [19] SANTA M. Next Generation Technologiesfor 100 Gb/s PON Systems[D]. Ireland: University College Cork, 2019.

    [20] [20] CHEN H Y, WEI C C, LU I C, et al. High-capacity and high-loss-budget OFDM long-reach PON without an optical amplifier[Invited][J]. IEEE/OSA Journal of Optical Communications & Networking, 2015, 7(1): A59-A65.

    [21] [21] GONG X, GUO L, DONG Y, et al. SPM-improved transmission performance of software-reconfigurable IMDD PONs based on digital orthogonal filtering[J]. Journal of Lightwave Technology, 2017, 35(20): 4488-4496.

    [22] [22] FENG N, LIU N, LIU C, et al. The high power budget IMDD OFDM-PON down-stream scheme employing sparse volterra filter-based nonlinear impairment mitigation[C]//Conference on Lasers and Electro-Optics (CLEO), May 14-19, 2017, San Jose, USA. San Jose: IEEE, 2017: 1-2.

    [23] [23] ISOE G M, LEITCH A W R, GIBBON T B. Maximizing capacity, flexibility and efficiency in G-PON networks using VCSEL-based OOK and 2/4-PAM formats[J]. Journal of Modern Optics, 2019, 66(7): 747-752.

    [24] [24] ZHANG J, YU J, CHIEN H, et al. Demonstration of 100Gb/s/λ PAM-4 TDM-PON supporting 29 dB power budget with 50km reach using 10G-class O-Band DML transmitters[C]//Optical Fiber Communications Conference and Exhibition (OFC), March 3-7, 2019, San Diego, USA. San Diego: IEEE, 2019: 1-3.

    [26] [26] ZHANG Z, LIU N, JU C, et al. IMDD-based bidirectional 20 Gb/s/λ WDM-PON with nyquist 4 PAM employing rayleigh backscattering noise detection-based self wavelength management[J]. Optical and Quantum Electronics, 2016, 48(3): 210-1-210-12.

    [27] [27] WEI J, GIACOUMIDIS E. 40 Gb/s/λ optical amplified PAM-4 PON with transmission over 30 km SMF using 10G Optics and simple DSP[C]// Optical Fiber Communications Conference & Exhibition(OFC), March 19-23, 2017, Los Angeles, USA. Los Angeles: IEEE, 2017: 1-3.

    [28] [28] LIU N, JU C, LI C. Nonlinear ISI cancellation in nyquist-SCM direct detection PON downstream scheme with volterra pre-equalizer[J]. Optical Fiber Technology, 2018, 45: 14-18.

    [29] [29] ZHANG J, YU J, LI F, et al. 11×5×9.3 Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection [J]. Optics Express, 2013, 21(16): 18842-18848.

    [30] [30] YI L, LIAO T, HUANG L, et al. Machine learning for 100 Gb/s/λ passive optical network [J]. Journal of Lightwave Technology, 2019, 37(6): 1621-1630.

    [31] [31] LI P, YI L, XUE L, et al. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning[C]//Optical Fiber Communications Conference and Exposition(OFC), March 11-15, 2018, San Diego, USA. San Diego: IEEE , 2018: 1-3.

    [32] [32] ZHANG J, YU J, CHI N. Advanced digital signal processing for short-haul and access network[C]//Optical Metro Networks & Short-haul Systems VIII, February 13, 2016, San Francisco, USA. San Diego: SPIE, 2016: 1-10.

    [33] [33] YU J, LABS O, INC Z. Digital signal processing for optical access networks[J]. ZTE Communications, 2014, 12(4): 40-48.

    [34] [34] NETO L A, MAES J, LARSSON-EDEFORS P, et al. Considerations on the use of digital signal processing in future optical access network[J]. Journal of Lightwave Technology, 2019, 38(3): 598-607.

    [35] [35] ZHOU L, HE H, ZHANG Y, et al. Enhancement of Spectral Efficiency and Power Budget in WDN-PON Employing LDPC-coded Probabilistic Shaping PAM8[J]. IEEE Access, 2020, 8(99): 45766-45773.

    [36] [36] ZHANG J, YU J, LI X, et al. 200 Gbit/s/λ PDM-PAM-4 PON system based on intensity modulation and coherent detection[J]. Journal of Optical Communications and Networking, 2020, 12(1): A1-A8.

    [37] [37] CHEN L, HALABI F, GIDDINGS B, et al. Subcarrier index-power modulated optical OFDM with superposition multiplexing for IMDD transmission systems[J]. Journal of Lightwave Technology, 2016, 34(22): 5284-5292.

    [38] [38] HSU J H, YU M, WEI C C, et al. Employing hybrid sub-nyquist sampling rates to support heterogeneous services of varying capacity in 25 Gbps DDM-OFDM-PON[J]. IEEE Photonics Journal, 2018, 10(2): 1-8.

    [39] [39] ZHANG Y, LIU B, REN J, et al. Flexible probabilistic shaping PON based on ladder-type probability model [J]. IEEE Access, 2020, 8: 34170-34176.

    [40] [40] HE Z, BO TW, KIM H . Probabilistically shaped coded modulation for IM/DD system[J]. Optics express, 2019, 27(9): 12126-12136.

    [41] [41] ZHANG L, YANG C, ZHANG F. Joint optimizing of interleaving and LDPC decoding for burst errors in PON systems [J]. Science China Information Sciences, 2020, 63(2): 129302-1-129302-3.

    [42] [42] LINDEN R V D, YIN X, TRAN N C, et al. Demonstration of upstream flexible 2-/4-PAM formats for practical PON deployments[C]//42nd european conference on optical communication(ECOC), Sept. 18-22, 2016, Dusseldorf, Germany. Dusseldorf: VDE, 2016: 1-3.

    [43] [43] LINDEN R V D, TRAN N C, TANGDIONGGA E, et al. Increasing flexibility and capacity in real PON deployments by Using 2/4/8-PAM formats[C]//Optical Fiber Communication Conference, March 20-24, 2016, Anaheim, USA. Anaheim: IEEE, 2016: 1-3.

    [44] [44] LI C, LUO M, QIU Y, et al. Flexible coherent PON system based on cost-effective heterodyne detection of PDM-PAM-n signal[C]//2016 IEEE/CIC International Conference on Communications in China (ICCC), July 27-29, 2016, Chengdu, China. Chengdu: IEEE, 2016: 1-3.

    [45] [45] LI H, LUO M, LI X, et al. Demonstration of 50-Gb/s/λ PAM-4 PON with Single-PD using Polarization-Insensitive and SSBI Suppressed Heterodyne Coherent Detection[C]//2020 Optical Fiber Communications Conference and Exhibition(OFC), March 8-12, 2020, San Diego, USA. San Diego: IEEE, 2020: 1-3.

    [46] [46] EFFENBERGER F J, ZENG H, SHEN A, et al. Burst-mode error distribution and mitigation in DSP-assisted high-speed PONs[J]. Journal of Lightwave Technology, 2020, 38(4): 754-760.

    [47] [47] GAUR C B, FERREIRA F, GORDIENKO V, et al. Experimental comparison of fiber optic parametric, raman and erbium amplifiers for burst traffic for extended reach PON[J]. Optics Express, 2020, 28(13): 19362-19373.

    [48] [48] ZHANG J, JIA Z, XU M, et al. High-performance preamble design and upstream burst-mode detection in 100Gb/s/λ TDM coherent-PON[C]//Optical Fiber Communications Conference and Exhibition(OFC), March 8-12, 2020, San Diego, USA. San Diego: IEEE, 2020: 1-3.

    [49] [49] ZOU J S, SASU S A, LAWIN M, et al. Advanced optical access technologies for next-generation(5G) mobile networks [Invited][J] Journal of Optical Communications and Networking, 2020, 12(10): D86-D98.

    [50] [50] WEY J S, LUO Y, PFEIFFER T. 5G wireless transport in a PON context: an overview[J]. IEEE Communications Standards Magazine, 2020, 4(1): 50-56.

    Tools

    Get Citation

    Copy Citation Text

    FENG Nan, LIAN Bin. Survey of physical layer key technologies for next generation optical access network[J]. Optical Communication Technology, 2021, 45(11): 53

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 1, 2021

    Accepted: --

    Published Online: Dec. 25, 2021

    The Author Email:

    DOI:10.13921/j.cnki.issn1002-5561.2021.11.010

    Topics