Optics and Precision Engineering, Volume. 30, Issue 21, 2711(2022)
Nonlinear optical microscopy in two-dimensional materials
[1] K S NOVOSELOV, A K GEIM, S V MOROZOV et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).
[2] T JIANG, D HUANG, J L CHENG et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nature Photonics, 12, 430-436(2018).
[3] A H C NETO, F GUINEA, N M R PERES et al. The electronic properties of graphene. Reviews of Modern Physics, 81, 109-162(2009).
[4] F BONACCORSO, Z SUN, T HASAN et al. Graphene photonics and optoelectronics. Nature Photonics, 4, 611-622(2010).
[5] F H L KOPPENS, D E CHANG, F J GARCÍA DE ABAJO. Graphene plasmonics: a platform for strong light-matter interactions. Nano Letters, 11, 3370-3377(2011).
[6] J S ROSS, S F WU, H Y YU et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Communications, 4, 1474(2013).
[7] K F MAK, K L HE, C G LEE et al. Tightly bound trions in monolayer MoS2. Nature Materials, 12, 207-211(2013).
[8] Z L YE, T CAO, K O’BRIEN et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 513, 214-218(2014).
[9] M M UGEDA, A J BRADLEY, S F SHI et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Materials, 13, 1091-1095(2014).
[10] K L HE, N KUMAR, L ZHAO et al. Tightly bound excitons in monolayer WSe2. Physical Review Letters, 113(2014).
[11] A CHERNIKOV, T C BERKELBACH, H M HILL et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Physical Review Letters, 113(2014).
[12] Y M LI, J LI, L K SHI et al. Light-induced exciton spin Hall effect in van der waals heterostructures. Physical Review Letters, 115, 166804(2015).
[13] P ZHANG, L L MA, F F FAN et al. Fracture toughness of graphene. Nature Communications, 5, 3782(2014).
[14] S DAI, Z FEI, Q MA et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science, 343, 1125-1129(2014).
[15] F HU, Y LUAN, M E SCOTT et al. Imaging exciton-polariton transport in MoSe2 waveguides. Nature Photonics, 11, 356-360(2017).
[16] S Y DAI, W J FANG, N RIVERA et al. Phonon polaritons in monolayers of hexagonal boron nitride. Advanced Materials (Deerfield Beach, Fla), 31(2019).
[17] A J BEN-SASSON, J L WATSON, W SHEFFLER et al. Design of biologically active binary protein 2D materials. Nature, 589, 468-473(2021).
[18] T KAMBE, S IMAOKA, M SHIMIZU et al. Liquid crystalline 2D borophene oxide for inorganic optical devices. Nature Communications, 13, 1037(2022).
[19] J Q DONG, L M LIU, C X TAN et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature, 602, 606-611(2022).
[20] M GARNICA, D STRADI, S BARJA et al. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nature Physics, 9, 368-374(2013).
[21] X LIN, J C LU, Y SHAO et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nature Materials, 16, 717-721(2017).
[22] Z Z QIU, M HOLWILL, T OLSEN et al. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications, 12, 70(2021).
[23] G L ZHAN, Z F CAI, K STRUTYŃSKI et al. Observing polymerization in 2D dynamic covalent polymers. Nature, 603, 835-840(2022).
[24] D GRAF, F MOLITOR, K ENSSLIN et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Letters, 7, 238-242(2007).
[25] L M MALARD, M A PIMENTA, G DRESSELHAUS et al. Raman spectroscopy in graphene. Physics Reports, 473, 51-87(2009).
[26] A SPLENDIANI, L SUN, Y B ZHANG et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 10, 1271-1275(2010).
[27] K F MAK, C G LEE, J HONE et al. Atomically thin MoS₂: a new direct-gap semiconductor. Physical Review Letters, 105, 136805(2010).
[28] P VENEZUELA, M LAZZERI, F MAURI. Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Physical Review B, 84(2011).
[29] G WANG, I C GERBER, L BOUET et al. Exciton states in monolayer MoSe2: impact on interband transitions. 2D Materials, 2(2015).
[30] K L SEYLER, J R SCHAIBLEY, P GONG et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotechnology, 10, 407-411(2015).
[31] S SHREE, D LAGARDE, L LOMBEZ et al. Interlayer exciton mediated second harmonic generation in bilayer MoS2. Nature Communications, 12, 6894(2021).
[32] P A FRANKEN, A E HILL, C W PETERS et al. Generation of optical harmonics. Physical Review Letters, 7, 118-119(1961).
[33] G K LIM, Z L CHEN, J CLARK et al. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photonics, 5, 554-560(2011).
[34] L WU, S PATANKAR, T MORIMOTO et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nature Physics, 13, 350-355(2017).
[35] Y G ZUO, W T YU, C LIU et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nature Nanotechnology, 15, 987-991(2020).
[36] H HONG, C C WU, Z X ZHAO et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nature Photonics, 15, 510-515(2021).
[37] Y R SHEN. The Principles of Nonlinear Optics(1984).
[38] J L CHENG, N VERMEULEN, J E SIPE. Third order optical nonlinearity of graphene. New Journal of Physics, 16(2014).
[39] Y ZHANG, D HUANG, Y W SHAN et al. Doping-induced second-harmonic generation in centrosymmetric graphene from quadrupole response. Physical Review Letters, 122(2019).
[40] Y W SHAN, Y G LI, D HUANG et al. Stacking symmetry governed second harmonic generation in graphene trilayers. Science Advances, 4(2018).
[41] M VANDELLI, M I KATSNELSON, E A STEPANOV. Resonant optical second harmonic generation in graphene-based heterostructures. Physical Review B, 99, 165432(2019).
[42] N KUMAR, J KUMAR, C GERSTENKORN et al. Third harmonic generation in graphene and few-layer graphite films. Physical Review B-Condensed Matter and Materials Physics, 87, 121406(2013).
[43] A SÄYNÄTJOKI, L KARVONEN, J RIIKONEN et al. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano, 7, 8441-8446(2013).
[44] R CIESIELSKI, A COMIN, M HANDLOSER et al. Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy. Nano Letters, 15, 4968-4972(2015).
[45] T GU, N PETRONE, J F MCMILLAN et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 6, 554-559(2012).
[46] E HENDRY, P J HALE, J MOGER et al. Coherent nonlinear optical response of graphene. Physical Review Letters, 105(2010).
[47] C J KIM, L BROWN, M W GRAHAM et al. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Letters, 13, 5660-5665(2013).
[48] Y L LI, Y RAO, K F MAK et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Letters, 13, 3329-3333(2013).
[49] S KIM, J E FRÖCH, A GARDNER et al. Second-harmonic generation in multilayer hexagonal boron nitride flakes. Optics Letters, 44, 5792-5795(2019).
[50] M C LUCKING, K BEACH, H TERRONES. Large second harmonic generation in alloyed TMDs and boron nitride nanostructures. Scientific Reports, 8, 10118(2018).
[51] A A POPKOVA, I M ANTROPOV, J E FRÖCH et al. Optical third-harmonic generation in hexagonal boron nitride thin films. ACS Photonics, 8, 824-831(2021).
[52] L M MALARD, T V ALENCAR, A P M BARBOZA et al. Observation of intense second harmonic generation from MoS2 atomic crystals. Physical Review B-Condensed Matter and Materials Physics, 87, 201401(2013).
[53] N KUMAR, S NAJMAEI, Q N CUI et al. Second harmonic microscopy of monolayer MoS2. Physical Review B, 87, 161403(2013).
[54] X B YIN, Z L YE, D A CHENET et al. Edge nonlinear optics on a MoS₂ atomic monolayer. Science, 344, 488-490(2014).
[55] C JANISCH, Y X WANG, D MA et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Scientific Reports, 4, 5530(2014).
[56] M L TROLLE, Y C TSAO, K PEDERSEN et al. Observation of excitonic resonances in the second harmonic spectrum of MoS2. Physical Review B, 92, 161409(2015).
[57] G WANG, X MARIE, I GERBER et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Physical Review Letters, 114(2015).
[58] H K YU, D TALUKDAR, W G XU et al. Charge-induced second-harmonic generation in bilayer WSe2. Nano Letters, 15, 5653-5657(2015).
[59] R BEAMS, L G CANÇADO, S KRYLYUK et al. Characterization of few-layer 1T' MoTe 2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano, 10, 9626-9636(2016).
[60] R I WOODWARD, R T MURRAY, C F PHELAN et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Materials, 4(2016).
[61] D W LI, W XIONG, L J JIANG et al. Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der waals heterostructures. ACS Nano, 10, 3766-3775(2016).
[62] X P FAN, Y JIANG, X J ZHUANG et al. Broken symmetry induced strong nonlinear optical effects in spiral WS 2 nanosheets. ACS Nano, 11, 4892-4898(2017).
[63] H T CHEN, V CORBOLIOU, A S SOLNTSEV et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light: Science & Applications, 6(2017).
[64] A SÄYNÄTJOKI, L KARVONEN, H ROSTAMI et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nature Communications, 8(2017).
[65] L KARVONEN, A SÄYNÄTJOKI, M J HUTTUNEN et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nature Communications, 8, 15714(2017).
[66] A ANTON, J HENRI, M ANDREA et al. Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Physical Review B, 98, 115426(2018).
[67] T JAKUBCZYK, V DELMONTE, M KOPERSKI et al. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Letters, 16, 5333-5339(2016).
[68] N YOUNGBLOOD, R M PENG, A NEMILENTSAU et al. Layer-tunable third-harmonic generation in multilayer black phosphorus. ACS Photonics, 4, 8-14(2017).
[69] A AUTERE, C R RYDER, A SÄYNÄTJOKI et al. Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy. The Journal of Physical Chemistry Letters, 8, 1343-1350(2017).
[70] V A MARGULIS, E E MURYUMIN, E A GAIDUK. Coherent nonlinear optical response of single-layer black phosphorus: third-harmonic generation. The European Physical Journal B, 90, 203(2017).
[71] S UDDIN, P C DEBNATH, K PARK et al. Nonlinear black phosphorus for ultrafast optical switching. Scientific Reports, 7, 43371(2017).
[72] T S YANG, I ABDELWAHAB, H LIN et al. Anisotropic third-order nonlinearity in pristine and lithium hydride intercalated black phosphorus. ACS Photonics, 5, 4969-4977(2018).
[73] Z Y CHEN, R QIN. Strong-field nonlinear optical properties of monolayer black phosphorus. Nanoscale, 11, 16377-16383(2019).
[74] Z Y SUN, Y F YI, T C SONG et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature, 572, 497-501(2019).
[75] H L ZENG, G B LIU, J F DAI et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific Reports, 3, 1608(2013).
[76] M ZHAO, Z L YE, R SUZUKI et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light: Science & Applications, 5(2016).
[77] J YU, X F KUANG, J Z LI et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nature Communications, 12, 1083(2021).
[78] Y SONG, R J TIAN, J L YANG et al. Second harmonic generation in atomically thin MoTe2. Advanced Optical Materials, 6, 1701334(2018).
[79] L J DU, T HASAN, A CASTELLANOS-GOMEZ et al. Engineering symmetry breaking in 2D layered materials. Nature Reviews Physics, 3, 193-206(2021).
[80] Y SONG, S Q HU, M L LIN et al. Extraordinary second harmonic generation in ReS2 atomic crystals. ACS Photonics, 5, 3485-3491(2018).
[81] N BALLA, M O’BRIEN, N MCEVOY et al. Effects of excitonic resonance on second and third order nonlinear scattering from few-layer MoS2. ACS Photonics, 5, 1235-1240(2018).
[82] S Y HONG, J I DADAP, N PETRONE et al. Optical third-harmonic generation in graphene. Physical Review X, 3(2013).
[83] M M WANG, D W LI, K LIU et al. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser. ACS Nano, 14, 11169-11177(2020).
[84] H YANG, H H GUAN, N BIEKERT et al. Layer dependence of third-harmonic generation in thick multilayer graphene. Physical Review Materials, 2(2018).
[85] R R NAIR, P BLAKE, A N GRIGORENKO et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).
[86] R BISWAS, M DANDU, S MENON et al. Third-harmonic generation in multilayer Tin Diselenide under the influence of Fabry-Perot interference effects. Optics Express, 27, 28855-28865(2019).
[87] D W LI, Y S ZHOU, X HUANG et al.
[88] J H WANG, H D YU, X ZHOU et al. Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly. Nature Communications, 8, 377(2017).
[89] Z M SHI, X J WANG, Y H SUN et al. Interlayer coupling in two-dimensional semiconductor materials. Semiconductor Science and Technology, 33(2018).
[90] J J P THOMPSON, D PEI, H PENG et al. Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy. Nature Communications, 11, 3582(2020).
[91] L B GAO, W C REN, H L XU et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications, 3, 699(2012).
[92] Z Y CAI, B L LIU, X L ZOU et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chemical Reviews, 118, 6091-6133(2018).
[93] Z Y HAN, L LI, F JIAO et al. Continuous orientated growth of scaled single-crystal 2D monolayer films. Nanoscale Advances, 3, 6545-6567(2021).
[94] P F YANG, D S WANG, X X ZHAO et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nature Communications, 13, 3238(2022).
[95] G C LI, D Y LEI, M QIU et al. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity. Nature Communications, 12, 4326(2021).
[96] S PSILODIMITRAKOPOULOS, L MOUCHLIADIS, I PARADISANOS et al. Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides. Light: Science & Applications, 7, 18005(2018).
[97] J X CHENG, T JIANG, Q Q JI et al. Kinetic nature of grain boundary formation in As-grown MoS2 monolayers. Advanced Materials (Deerfield Beach, Fla), 27, 4069-4074(2015).
[98] A M VAN DER ZANDE, P Y HUANG, D A CHENET et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 12, 554-561(2013).
[99] Q K QIAN, R ZU, Q Q JI et al. Chirality-dependent second harmonic generation of MoS2 nanoscroll with enhanced efficiency. ACS Nano, 14, 13333-13342(2020).
[100] H M XIA, X Y CHEN, S LUO et al. Probing the chiral domains and excitonic states in individual WS 2 tubes by second-harmonic generation. Nano Letters, 21, 4937-4943(2021).
[101] P Y HUANG, C S RUIZ-VARGAS, A M VAN DER ZANDE et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 469, 389-392(2011).
[103] K I LIN, Y H HO, S B LIU et al. Atom-dependent edge-enhanced second-harmonic generation on MoS 2 monolayers. Nano Letters, 18, 793-797(2018).
[105] J X CHENG, D HUANG, T JIANG et al. Chiral selection rules for multi-photon processes in two-dimensional honeycomb materials. Optics Letters, 44, 2141-2144(2019).
[106] B R CARVALHO, Y X WANG, K FUJISAWA et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Letters, 20, 284-291(2020).
[107] Z ZENG, X X SUN, D L ZHANG et al. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers. Advanced Functional Materials, 29, 1806874(2019).
[108] R BISWAS, M DANDU, A PROSAD et al. Strong near band-edge excited second-harmonic generation from multilayer 2H Tin diselenide. Scientific Reports, 11, 15017(2021).
[109] Q H WANG, K KALANTAR-ZADEH et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699-712(2012).
[110] T JIANG, H R LIU, D HUANG et al. Valley and band structure engineering of folded MoS2 bilayers. Nature Nanotechnology, 9, 825-829(2014).
[111] W T HSU, Z A ZHAO, L J LI et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano, 8, 2951-2958(2014).
[112] S PSILODIMITRAKOPOULOS, L MOUCHLIADIS, I PARADISANOS et al. Twist angle mapping in layered WS2 by polarization-resolved second harmonic generation. Scientific Reports, 9, 14285(2019).
[113] X ZHOU, J X CHENG, Y B ZHOU et al. Strong second-harmonic generation in atomic layered GaSe. Journal of the American Chemical Society, 137, 7994-7997(2015).
[114] F Y YANG, W S SONG, F H MENG et al. Tunable second harmonic generation in twisted bilayer graphene. Matter, 3, 1361-1376(2020).
[115] K Y YAO, N R FINNEY, J ZHANG et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Science Advances, 7(2021).
[116] P NAGLER, M V BALLOTTIN, A A MITIOGLU et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 8, 1551(2017).
[117] M Y LI, Y M SHI, C C CHENG et al. NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 349, 524-528(2015).
[118] X P HONG, J KIM, S F SHI et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 9, 682-686(2014).
[119] H M ZHU, J WANG, Z Z GONG et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions. Nano Letters, 17, 3591-3598(2017).
[120] X W WEN, H L CHEN, T M WU et al. Ultrafast probes of electron-hole transitions between two atomic layers. Nature Communications, 9, 1859(2018).
[121] A F RIGOSI, H M HILL, Y L LI et al. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Letters, 15, 5033-5038(2015).
[122] J R SCHAIBLEY, P RIVERA, H Y YU et al. Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nature Communications, 7, 13747(2016).
[123] P YAO, D W HE, P ZERESHKI et al. Nonlinear optical effect of interlayer charge transfer in a van der Waals heterostructure. Applied Physics Letters, 115, 263103(2019).
[124] M Z LIAO, Z W WU, L J DU et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nature Communications, 9, 4068(2018).
[125] M VÁZQUEZ SULLEIRO, A DEVELIOGLU, R QUIRÓS-OVIES et al. Fabrication of devices featuring covalently linked MoS2–graphene heterostructures. Nature Chemistry, 14, 695-700(2022).
[126] L MENNEL, M M FURCHI, S WACHTER et al. Optical imaging of strain in two-dimensional crystals. Nature Communications, 9, 516(2018).
[127] Y WANG, J XIAO, T F CHUNG et al. Direct electrical modulation of second-order optical susceptibility via phase transitions. Nature Electronics, 4, 725-730(2021).
[128] Y WANG, J XIAO, H Y ZHU et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 550, 487-491(2017).
[129] Z WANG, Z G DONG, H ZHU et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano, 12, 1859-1867(2018).
[130] Y LI, M KANG, J J SHI et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Letters, 17, 7803-7808(2017).
[131] M NAUMAN, J S YAN, D DE CEGLIA et al. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nature Communications, 12, 5597(2021).
[132] M A X BORN, E WOLF. Chapter VIII-Elements of the Theory of Diffraction. BORN M A X, 370-458(1980).
[133] T JIANG, V KRAVTSOV, M TOKMAN et al. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nature Nanotechnology, 14, 838-843(2019).
[134] K Y YAO, S ZHANG, Y EMANUIL et al. Nanoscale optical imaging of 2D semiconductor stacking orders by exciton-enhanced second harmonic generation. Advanced Optical Materials, 10, 2200085(2022).
[135] K D PARK, M B RASCHKE. Polarization control with plasmonic antenna tips: a universal approach to optical nanocrystallography and vector-field imaging. Nano Letters, 18, 2912-2917(2018).
[136] R ZHANG, Y ZHANG, Z C DONG et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).
[137] C XU, W W WEBB. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. Journal of the Optical Society of America B, 13, 481-491(1996).
[138] J YI, H PARK, J HAN et al. Effect of laser beam non-uniformity and the AC Stark shift on the two-photon resonant three-photon ionization process of the cesium atom. Journal of the Korean Physical Society, 33, 297-300(1998).
[139] V KRAVTSOV, R ULBRICHT, J M ATKIN et al. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nature Nanotechnology, 11, 459-464(2016).
[140] K HAO, G MOODY, F C WU et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nature Physics, 12, 677-682(2016).
[141] D N BASOV, M M FOGLER. The quest for ultrafast plasmonics. Nature Nanotechnology, 12, 187-188(2017).
[142] F LANGER, C P SCHMID, S SCHLAUDERER et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature, 557, 76-80(2018).
Get Citation
Copy Citation Text
Tao JIANG, Di HUANG, Renkang SONG, Anhang LIU, Zhanshan WANG, Xinbin CHENG. Nonlinear optical microscopy in two-dimensional materials[J]. Optics and Precision Engineering, 2022, 30(21): 2711
Received: Jul. 13, 2022
Accepted: --
Published Online: Nov. 28, 2022
The Author Email: CHENG Xinbin (chengxb@tongji.edu.cn)