Optics and Precision Engineering, Volume. 28, Issue 7, 1433(2020)
Research progress of surface acoustic wave ultraviolet detectors
[1] [1] ZHANG ZH L, LIU L D. Research on the application of ultraviolet technology in the military [J]. Optical Technology, 2000, 26(4): 289-293. (in Chinese)
[3] [3] XIE C, LU X T, TONG X W, et al.. Ultrawide-bandgap semiconductors: Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors [J]. Adv. Funct. Mater, 2019, 29(9): 1806006.
[4] [4] ZHANG Y, CAI Y, ZHOU J, et al.. Surface acoustic wave-based ultraviolet photodetectors: a review [J]. Science Bulletin, 2020, 65(7): 587-600.
[6] [6] PAN F. Surface Acoustic Wave Materials and Devices [M]. Beijing: Science Press, 2012. (in Chinese)
[7] [7] PENG W B, HE Y N, ZHAO X L, et al.. Investigation of the response mechanism for ZnO thin film based surface acoustic wave ultraviolet detector [J]. Piezoelectrics & Acoustooptics, 2014, 36(1): 12-15, 18. (in Chinese)
[8] [8] WANG S, LI Z J, ZHOU X, et al.. Advances in nanostructured acoustic wave technologies for ultraviolet sensing [J]. Nanoscience and Nanotechnology Letters, 2015, 7(3): 169-192.
[9] [9] PALACIOS T, CALLE F, GRAJAL J. Remote collection and measurement of photogenerated carriers swept by surface acoustic waves in GaN [J]. Appl. Phys. Lett., 2004, 84(16): 3166-3168.
[10] [10] CIPLYS D, SHUR M S, PALA N, et al.. Ultraviolet-sensitive AlGaN-based surface acoustic wave devices [C]. Sensors, 2004 IEEE, Vienna, 2004(3): 1345-1348.
[11] [11] CHIVUKULA V S, CIPLYS D, SHUR M S, et al.. Capacitance controlled n-GaN SAW UV sensor [C]. Sensors, 2008 IEEE. Lecce, 2008: 984-987.
[12] [12] LIU W J, HU X Y, YU S L. Development overview of GaN-based ultraviolet detector [J]. Laser & Infrared, 2012, 42 (11): 1210-1214. (in Chinese)
[13] [13] AMANO H, SAWAKI N, AKASAKI I, et al.. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer [J].Appl.Phys.Lett, 1986, 48(5): 353-355.
[14] [14] AMANO H, KITO M, HIRAMATSU K, et al.. P-type conduction in Mg-doped GaN treated with low energy electron beam irradiation (LEEBI) [J]. Jpn.J.Appl.Phys, 1989, 28: L2112-L2114.
[15] [15] WANG W L, YANG W J, LIU Z L, et al.. Synthesis of homogeneous and high-quality GaN films on Cu(111) substrates by pulsed laser deposition [J]. Cryst Eng Comm, 2014, 16(36): 8500-8507.
[16] [16] AL-HEUSEEN K, HASHIM M R. One-step synthesis of GaN thin films on Si substrate by a convenient electrochemical technique at low temperature for different durations [J]. Journal of Crystal Growth, 2011, 324(1): 274-277.
[17] [17] ARZAGA G G C, HERNNDEZ K V C, CASTRO N C, et al.. Synthesis and characterization of GaN rods prepared by ammono-chemical vapor deposition [J]. Advances in Chemical Engineering and Science, 2012, 2(2): 292-299.
[18] [18] CIPLYS D, RIMEIKA R, SEREIKA A, et al.. GaN-based SAW delay-line oscillator [J]. In Electronics Letters, 2001, 37(8): 545-546.
[19] [19] CIPLYS D, RIMEIKA R, SHUR M S, et al.. Visible-blind photoresponse of GaN-based surface acoustic wave oscillator [J]. Appl. Phys. Lett., 2002, 80(11): 2020-2022.
[20] [20] CHEN T C, LIN Y T, LIN C Y, et al.. Suitability of surface acoustic wave oscillators fabricated using low temperature-grown AlN films on GaN/sapphire as UV sensors [J]. IEEE on Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2008, 55(2): 489-493.
[21] [21] CIPLYS D, SHUR M S, SEREIKA A, et al.. Deep-UV LED controlled AlGaN-based SAW oscillator [J]. Phys. Stat. Sol. (a), 2006, 203(7): 1834-1838.
[22] [22] KOH K, NAKAI K, NEGISI T, et al.. P2I-1 surface acoustic wave ultraviolet sensor using epitaxial AlGaN/(Al, Ga)N film [C]. 2006 IEEE Ultrasonics Symposium, Vancouver, BC, 2006: 1774-1777.
[23] [23] FAN Y M, XU K, LIU Z H, et al.. Ultraviolet photoresponse of surface acoustic wave device based on Fe-doped high-resistivity GaN [J].Jpn. J. Appl. Phys., 2017, 56(5): 050307.
[25] [25] NAKANISHI Y, MIYAKE A, KOMINAMI H, et al.. Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation [J]. Applied Surface Science, 1999, 142: 233-236.
[26] [26] ONDO-NDONG R, ESSONE-OBAME H, MOUSSAMBI Z H, et al.. Capacitive properties of zinc oxide thin flms by radiofrequency magnetron sputtering [J]. Journal of Theoretical and Applied Physics, 2018(12): 309-317.
[27] [27] KUMAR G, KUMAR R, KUMAR A, et al. ZnO thin films: chemical vapour deposition, growth and functional properties [J]. Reviews in Advanced Sciences and Engineering, 2016, 5(2): 150-160.
[28] [28] WISZ G, VIRT I, SAGAN P, et al.. Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method [J]. Nanoscale Research Letters, 2017, 12(1): 253.
[29] [29] SHARMA P, KUMAR S, SREENIVAS K, et al.. Interaction of surface acoustic waves and ultraviolet ligh in ZnO films [J]. Journal of Materials Research Society, 2003, 18(3): 545-548.
[30] [30] EMANETOGLU N W, ZHU J, CHEN Y, et al.. Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire [J]. Appl. Phys. Lett., 2004, 85(17): 3702-3704.
[31] [31] KUMAR S, KIMG H, SREENIVAS K, et al.. ZnO based surface acoustic wave ultraviolet photo sensor [J]. J Electroceram, 2009, 22: 198-202.
[32] [32] WEI C L, CHEN Y C, CHENG C C, et al.. Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator [J]. Thin Solid Films, 2010, 518(11): 3059-3062.
[33] [33] SREENIVAS K, KUMAR S, SHARMA P. Interaction of surface acoustic waves with ultraviolet light [J]. Ferroelectrics, 2005, 329(1): 69-72.
[34] [34] GU H, HE X L, LUO J K. Research on high-speed UV sensing characteristics based on ZnO / glass SAW device [J]. Sensors and Microsystems, 2014, 33(9): 35-37, 41.(in Chinese)
[35] [35] YANG W, HULLAVARAD S S, NAGARAJ B, et al.. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors [J]. Appl. Phys. Lett., 2003, 82(20): 3424-3426.
[36] [36] ENDO H, KIKUCHI M, ASHIOI M, et al.. High-sensitivity mid-ultraviolet Pt/Mg0.59Zn0.41O schottky photodiode on a ZnO single crystal substrate [J]. Applied Physics Express, 2008(1): 051201.
[37] [37] KIM I S, LEE B T. Design and growth of deep UV-range single crystalline ZnMgAlO thin films lattice-matched to ZnO [J]. Crystal Growth & Design, 2010, 10(7): 3273-3276.
[38] [38] KUTEPOV M E, KAYDASHEV V E, KARAPETYAN G Y, et al.. Deep UV light sensitive Zn1-x-yMg xAlyO films with fast photoelectric response for SAW photodetectors [J]. Smart Mater. Struct., 2019, 28(6): 065024.
[39] [39] ULIANOVA V, ZAZERIN A, PASHKEVICH G, et al.. High-performance ultraviolet radiation sensors based on zinc oxide nanorods [J]. Sensors and Actuators A Physical, 2015, 234: 113-119.
[40] [40] NU’EZ C G, VILOURAS A, TAUBENAVARAJ W, et al.. ZnO nanowires-based flexible UV photodetector system for wearable dosimetry [C]. IEEE Sensors Journal, 2018, 18(19): 7881-7888.
[41] [41] XIANG Y, YU N S, LIU J, et al.. Simple fabrication of ZnO nanosheets/p-GaN heterostructure and ultraviolet detection [J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 102: 29-32.
[42] [42] WANG Z L. ZnO nanowire and nanobelt platform for nanotechnology [J]. Materials Science and Engineering R, 2009, 64(3/4): 33-71.
[43] [43] FANG X S, BANDO Y, GAUTAM U K, et al.. ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors [J]. Critical Reviews in Solid State and Materials Sciences, 2009, 34(3/4): 190-223.
[44] [44] TANG J F, SU H H, LU Y M, et al.. Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method [J]. Cryst Eng Comm, 2015, 17(3): 592-597.
[45] [45] MOHANAN A A, PARTHIBAN R, RAMAKRISHNAN N. Shadow mask assisted direct growth of ZnO nanowires as a sensing medium for surface acoustic wave devices using a thermal evaporation method [J]. Micromech. Microeng, 2016, 26(2): 025017.
[46] [46] WU J J, LIU S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J]. Adv. Mater., 2002, 14(3): 215-218.
[47] [47] JIMENEZ-CADENA G, COMINI E, FERRONI M, et al.. Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells [J]. Materials Chemistry and Physics, 2010, 124(1): 694-698.
[48] [48] SANG L W, LIAO M Y, SUMIYA M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures [J]. Sensors, 2013, 13(8): 10482-10518.
[49] [49] HE Y N, WEN CH B, LI X, et al.. SAW UV detector based on ZnO semiconductor nanowire film [J]. Journal of Functional Materials and Devices, 2008(1): 263-267.(in Chinese)
[50] [50] PENG W B, HE Y N, WEN C B, et al.. Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer [J]. Sensors Actuators A, 2012, 184: 34-40.
[51] [51] WANG W S, WU T T, CHOU T H, et al.. A ZnO nanorod-based SAW oscillator system for ultraviolet detection [J]. Nanotechnology, 2009, 20(13): 135503.
[52] [52] CHAI G Y, LUPAN O, CHOW L, et al.. Crossed zinc oxide nanorods for ultraviolet radiation detection [J]. Sensors and Actuators A, 2009, 150(2): 184-187.
[53] [53] LI W, GUO Y J, TANG Q B, et al.. Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices [J]. Surface and Coatings Technology, 2019, 363: 419-425.
[54] [54] LAO C S, PARK M C, KUANG Q, et al.. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization [J]. Am. Chem. Soc., 2007, 129(40): 12096-12097.
[55] [55] FU C, LEE K J, LEE K, et al.. Low-intensity ultraviolet detection using a surface acoustic-wave sensor with a Ag-doped ZnO nanoparticle film [J]. Smart Mater Struct, 2015, 24(1): 015010.
[56] [56] KHAN R, UTHIRAKUMAR P, KIM T H, et al.. Enhanced photocurrent performance of partially decorated Au nanoparticles on ZnO nanorods based UV photodetector [J]. Materials Research Bulletin, 2019, 115: 176-181.
[57] [57] CHIVUKULA A, CIPLYS D, SHUR M, et al.. ZnO nanoparticle surface acoustic wave UV sensor [J]. Appl. Phys. Lett., 2010, 96(23): 233512.
[58] [58] LEE K J, OH H, JO M, et al.. An ultraviolet sensor using spin-coated ZnO nanoparticles based on surface acoustic waves [J]. Microelectron. Eng., 2013, 111: 105-109.
[59] [59] SAHA T, GUO N Q, RAMAKRISHNAN N, et al.. Zinc oxide nanostructure-based langasite crystal microbalance ultraviolet sensor [J]. IEEE Sensors Journal, 2016, 16(9): 2964-2970.
[60] [60] HE X L, ZHOU J, WANG W B, et al.. High performance dual-wave mode flexible surface acoustic wave resonators for UV light sensing [J]. Micromech. Microeng, 2014, 24(5): 055014.
[61] [61] HASAN S A, TORUN H, GIBSON N, et al. Flexible UV sensor based on nanostructured ZnO thin film SAW device [J]. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 2019: 85-90.
[62] [62] LI J, FAN Z Y, DAHAL R, et al.. 200 nm deep ultraviolet photodetectors based on AlN [J]. Appl. Phys. Lett., 2006(21), 89: 213510.
[63] [63] WATER W, WEN C W. Application of TiO2 thin film with nanorods to surface acoustic wave type ultraviolet photo detection [J]. Electroceram, 2016, 36: 94-101.
[64] [64] ZHOU P, CHEN C S, WANG X, et al.. 2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing [J]. Sensors and Actuators A, 2018, 271: 389-397.
[65] [65] JIANG T Y, JU ZH Y, LIU H F, et al.. High sensitive surface-acoustic-wave optical sensor based on two-dimensional perovskite [C]. 2019 International Conference on IC Design and Technology (ICICDT), SUZHOU, China, 2019: 1-4.
Get Citation
Copy Citation Text
YIN Chang-shuai, ZHOU Jian, LIU Yi, WU Jian-hui, XIONG Shuo, DUAN Hui-gao. Research progress of surface acoustic wave ultraviolet detectors[J]. Optics and Precision Engineering, 2020, 28(7): 1433
Category:
Received: Nov. 4, 2019
Accepted: --
Published Online: Nov. 2, 2020
The Author Email: Chang-shuai YIN (yin.CS@foxmail.com)