Optics and Precision Engineering, Volume. 30, Issue 12, 1499(2022)
Improved CycleGAN network for underwater microscopic image color correction
[1] T NOZAKI, T NAGASE, T USHIKUBO et al. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization. Geology, 49, 222-227(2021).
[2] R K SINHA, K P KRISHNAN, F A THOMAS et al. Polyphasic approach revealed complex bacterial community structure and function in deep sea sediment of ultra-slow spreading Southwest Indian Ridge. Ecological Indicators, 96, 40-51(2019).
[3] R NIKOLAUS, J W AMMERMAN, I R MACDONALD. Distinct pigmentation and trophic modes in beggiatoa from hydrocarbon seeps in the gulf of Mexico. Aquatic Microbial Ecology, 32, 85-93(2003).
[4] R ZHANG, X Y GUI, H Y CHENG et al. Underwater image recovery utilizing polarimetric imaging based on neural networks. Applied Optics, 60, 8419(2021).
[5] S C WU, T LUO, G Y JIANG et al. A two-stage underwater enhancement network based on structure decomposition and characteristics of underwater imaging. IEEE Journal of Oceanic Engineering, 46, 1213-1227(2021).
[6] R Y HAN, Y GUAN, Z B YU et al. Underwater image enhancement based on a spiral generative adversarial framework. IEEE Access, 8, 218838-218852(2020).
[7] X H ZONG, Z H CHEN, D D WANG. Local-CycleGAN: a general end-to-end network for visual enhancement in complex deep-water environment. Applied Intelligence, 51, 1947-1958(2021).
[8] X Y FU, X Y CAO. Underwater image enhancement with global-local networks and compressed-histogram equalization. Signal Processing: Image Communication, 86, 115892(2020).
[9] W SONG, Y WANG, D M HUANG et al. Enhancement of underwater images with statistical model of background light and optimization of transmission map. IEEE Transactions on Broadcasting, 66, 153-169(2020).
[10] [10] 10褚金奎, 张培奇, 成昊远, 等. 基于特定偏振态成像的水下图像去散射方法[J]. 光学 精密工程, 2021, 29(5): 1207-1215. doi: 10.37188/OPE.20212905.1207CHUJ K, ZHANGP Q, CHENGH Y, et al. De-scattering method of underwater image based on imaging of specific polarization state[J]. Opt. Precision Eng., 2021, 29(5): 1207-1215.(in Chinese). doi: 10.37188/OPE.20212905.1207
[11] P X ZHUANG, X H DING. Underwater image enhancement using an edge-preserving filtering Retinex algorithm. Multimedia Tools and Applications, 79, 17257-17277(2020).
[12] J Y ZHU, T PARK, P ISOLA et al. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2242-2251(2017).
[13] [13] 13杜振龙, 沈海洋, 宋国美, 等. 基于改进CycleGAN的图像风格迁移[J]. 光学 精密工程, 2019, 27(8): 1836-1844. doi: 10.3788/ope.20192708.1836DUZ L, SHENH Y, SONGG M, et al. Image style transfer based on improved CycleGAN[J]. Opt. Precision Eng., 2019, 27(8): 1836-1844.(in Chinese). doi: 10.3788/ope.20192708.1836
[14] J Y LU, N LI, S Y ZHANG et al. Multi-scale adversarial network for underwater image restoration. Optics & Laser Technology, 110, 105-113(2019).
[15] F LIU, P L HAN, Y WEI et al. Deeply seeing through highly turbid water by active polarization imaging. Optics Letters, 43, 4903-4906(2018).
[16] K O AMER, M ELBOUZ, A ALFALOU. Phase Contrast Enhancement Combined with Dark Channel Prior for Underwater Target Recognition. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 74-81(2018).
[17] [17] 17聂瑛, 何志毅. 不同波长光源照明的水下成像及光学图像实时处理[J]. 光学学报, 2014, 34(7): 0710002. doi: 10.3788/aos201434.0710002NIEY, HEZ Y. Underwater imaging and real-time optical image processing under illumination by light sources with different wavelengths[J]. Acta Optica Sinica, 2014, 34(7): 0710002.(in Chinese). doi: 10.3788/aos201434.0710002
[18] [18] 18王卫星, 赵恒. 结合改进Retinex及自适应分数阶微分的雾霾公路交通图像增强[J]. 光学 精密工程, 2020, 28(8): 1820-1834. doi: 10.3788/OPE.20202808.1820WANGW X, ZHAOH. Haze traffic image enhancement based on improved retinex and adaptive fractional differential[J]. Opt. Precision Eng., 2020, 28(8): 1820-1834.(in Chinese). doi: 10.3788/OPE.20202808.1820
[19] [19] 19王冬云, 唐楚, 鄂世举, 等. 基于导向滤波Retinex和自适应Canny的图像边缘检测[J]. 光学 精密工程, 2021, 29(2): 443-451. doi: 10.37188/OPE.20212902.0443WANGD Y, TANGC, ES J, et al. Image edge detection based on guided filter Retinex and adaptive Canny[J]. Opt. Precision Eng., 2021, 29(2): 443-451.(in Chinese). doi: 10.37188/OPE.20212902.0443
[20] A HORÉ, D ZIOU. Image quality metrics: PSNR vs. SSIM, 2366-2369(2010).
[21] M YANG, A SOWMYA. An underwater color image quality evaluation metric. IEEE Transactions on Image Processing, 24, 6062-6071(2015).
Get Citation
Copy Citation Text
Haotian WANG, Qingsheng LIU, Liang CHEN, Wangquan YE, Yuan LU, Jinjia GUO, Ronger ZHENG. Improved CycleGAN network for underwater microscopic image color correction[J]. Optics and Precision Engineering, 2022, 30(12): 1499
Category: Information Sciences
Received: Mar. 1, 2022
Accepted: --
Published Online: Jul. 5, 2022
The Author Email: YE Wangquan (yewangquan@ouc.edu.cn)