Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 9, 1124(2023)

Application of microwave technology in deep brain information detection

JIANG Tingfeng1, YE Jinghua2, SHI Kaibo2, and ZHU Huacheng3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(36)

    [10] [10] PERSSON M, FHAGER A, TREFNá H D, et al. Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible[J]. IEEE Transactions on Biomedical Engineering, 2014,61(11):2806-2817.

    [11] [11] TREFNA H, PERSSON M. Antenna array design for brain monitoring[C]// 2008 IEEE Antennas and Propagation Society International Symposium. San Diego,CA,USA:IEEE, 2008:1-4.

    [12] [12] LI X P,XIA Q,QU D,et al. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging[J]. Scientific Reports, 2014(4):6893.

    [13] [13] SHAO Wenyi, EDALATI A, MCCOLLOUGH T R, et al. A time-domain measurement system for UWB microwave imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2018,66(5):2265-2275.

    [14] [14] EBRAHIMI GHIRI R, POURGHORBAN SAGHATI A, KAYA E, et al. A miniaturized contactless UWB microwave system for time-domain dielectric spectroscopy[J]. IEEE Transactions on Microwave Theory and Techniques, 2017,65(12):5334-5344.

    [15] [15] MOLL J, WC.RTGE D, KROZER V, et al. Quality control of carbon-rubber tissue phantoms: comparative MRI, CT, X-ray and UWB microwave measurements[C]// 2017 11th European Conference on Antennas and Propagation(EUCAP). Paris, France: IEEE, 2017:2723-2727.

    [18] [18] CHANDRA R,ZHOU Huiyuan,BALASINGHAM I,et al. On the opportunities and challenges in microwave medical sensing and imaging[J]. IEEE Transactions on Biomedical Engineering, 2015,62(7):1667-1682.

    [19] [19] HOPFER M, PLANAS R, HAMIDIPOUR A, et al. Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke:a virtual data and human head phantom study[J]. IEEE Antennas and Propagation Magazine, 2017,59(5):86-97.

    [20] [20] YILDIRIM U,DILMAN .,BILGIN E,et al. Continuous monitoring of hemorrhagic brain strokes via contrast source inversion[C]// 2017 the 11th European Conference on Antennas and Propagation(EUCAP). Paris,France:IEEE, 2017:408-411.

    [21] [21] DILMAN ., AKINCI M N, .AY.REN M, et al. Differential microwave imaging of the stroke-affected brain via diffraction tomography[C]// 2017 the 25th Telecommunication Forum(TELFOR). Belgrade,Serbia:IEEE, 2017:1-4.

    [22] [22] UKIL A. Denoising and frequency analysis of noninvasive magnetoencephalography sensor signals for functional brain mapping[J]. IEEE Sensors Journal, 2012,12(3):447-455.

    [26] [26] CANDèS E J,WAKIN M B,BOYD S P. Enhancing sparsity by reweighted .1 minimization[J]. Journal of Fourier Analysis and Applications, 2008,14(5):877-905.

    [29] [29] ZHAO Yuan, CHI Zihui, HUANG Lin, et al. Thermoacoustic tomography of in vivo rat brain[J]. Journal of Innovative Optical Health Sciences, 2017,10(4):1740001.

    [30] [30] YAN An,LIN Li,LIU Changjun,et al. Microwave-induced thermoacoustic tomography through an adult human skull[J]. Medical Physics, 2019,46(4):1793-1797.

    [31] [31] CHI Zihui,LIANG Xiao,WANG Xue,et al. Detection and monitoring of osteoporosis in a rat model by thermoacoustic tomography[J]. IEEE Journal of Electromagnetics,RF and Microwaves in Medicine and Biology, 2020,4(4):234-239.

    [32] [32] HUANG Lin,CAI Wei,ZHAO Yuan,et al. In vivo tumor detection with combined Mr-photoacoustic-thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2016,9(5):1650015.

    [33] [33] ZHAO Yuan, CHI Zihui, GE Shaoli, et al. Microwave-excited hybrid thermoacoustic and ultrasound imaging with microwave pulse-width modulation[J]. AIP Advances, 2019,9(1):015323.

    [34] [34] FADDEN C,KOTHAPALLI S R. A single simulation platform for hybrid photoacoustic and RF-acoustic computed tomography[J]. Applied Sciences, 2018,8(9):1568.

    [35] [35] LüDEKE K M, SCHIEK B, K.HLER J. Radiation balance microwave thermograph for industrial and medical applications[J]. Electronics Letters, 1978,14(6):194-196.

    [36] [36] MARUYMA K,MIZUSHINA S,SUGIURA T,et al. Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(11): 2141-2147.

    [37] [37] BIERNACKI R,CHEN S,ESTEP G,et al. Statistical analysis and yield optimization in practical RF and microwave designs[C]// 2012 IEEE/MTT-S International Microwave Symposium Digest. Montreal,QC,Canada:IEEE, 2012:1-3.

    [38] [38] HAND J W,VAN LEEUWEN G M J,MIZUSHINA S,et al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling[J]. Physics in Medicine & Biology, 2001,46(7):1885-1903.

    [39] [39] RODRIGUES D B,STAUFFER P R,PEREIRA P J S,et al. Microwave radiometry for noninvasive monitoring of brain temperature [M]// CROCCO L,KARANASIOU I,JAMES M L,et al. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Cham:Springer, 2018:87-127.

    [40] [40] KOSTSOV V S, IONOV D V, BIRYUKOV E Y, et al. Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by the RPG-HATPRO instrument[J]. International Journal of Remote Sensing, 2018,39(5):1321-1342.

    [41] [41] VAN LEEUWEN G M J, HAND J W, VAN DE KAMER J B, et al. Temperature retrieval algorithm for brain temperature monitoring using microwave brightness temperatures[J]. Electronics Letters, 2001,37(6):341-342.

    [42] [42] QIAN P C,BARRY M A, LU Juntang,et al. Transcatheter microwave ablation can deliver deep and circumferential perivascular nerve injury without significant arterial injury to provide effective renal denervation[J]. Journal of Hypertension, 2019,37(10): 2083-2092.

    [43] [43] PEREZ MACHADO A F,PERRACINI M R,CRUZ SARAIVA DE MORAIS A D,et al. Microwave diathermy and transcutaneous electrical nerve stimulation effects in primary dysmenorrhea: clinical trial protocol[J]. Pain Management, 2017,7(5):359-366.

    [44] [44] SEDANKIN M, CHUPINA D, VESNIN S, et al. Development of a miniature microwave radiothermograph for monitoring the internal brain temperature[J]. Eastern-European Journal of Enterprise Technologies, 2018,3(5):26-36.

    [45] [45] DICKE R H. The measurement of thermal radiation at microwave frequencies[M]. SULLIVAN W T. Classics in Radio Astronomy. Dordrecht:Springer, 1982:106-113.

    [46] [46] GUDKOV A G,LEUSHIN V Y,VESNIN S G,et al. Studies of a microwave radiometer based on integrated circuits[J]. Biomedical Engineering, 2020,53(6):413-416.

    [47] [47] CETINDOGAN B,USTUNDAG B,TURKMEN E,et al. A D-band SPDT switch utilizing reverse-saturated SiGe HBTs for dicke-radiometers[C]// 2018 11th German Microwave Conference(GeMiC). Freiburg,Germany:IEEE, 2018:47-50.

    [48] [48] GALAZIS C,VESNIN S,GORYANIN I. Application of artificial intelligence in Microwave Radiometry(MWR)[C]// Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. Prague, Czech Republic: SciTePress, 2019: 112-122.

    [50] [50] GURKOVSKIY B V, ZHURAVLEV B V, ONISHCHENKO E M, et al. Techniques and instrumental complex for research of influence of microwaves encoded by brain neural signals on biological objects' Psycho physiological state[J]. IOP Conference Series:Materials Science and Engineering, 2016,151(1):012019.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Tingfeng, YE Jinghua, SHI Kaibo, ZHU Huacheng. Application of microwave technology in deep brain information detection[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(9): 1124

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 4, 2021

    Accepted: --

    Published Online: Jan. 19, 2024

    The Author Email:

    DOI:10.11805/tkyda2021234

    Topics