Nano-Micro Letters, Volume. 16, Issue 1, 040(2024)
Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform
[8] [8] L.J. Cai, D.Y. Xu, Z.Y. Zhang, N. Li, Y.J. Zhao, Tailoring functional micromotors for sensing. Research 6, 0044 (2023).
[24] [24] C.Y. Huang, Z.Y. Lai, X.Y. Wu, T.T. Xu, Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. Cyborg. Bionic. Syst. 2022, 0004 (2022).
[35] [35] J.H. Li, L. Dekanovsky, B. Khezri, B. Wu, H.J. Zhou et al., Biohybrid micro and nanorobots for intelligent drug delivery. Cyborg. Bionic. Syst. 2022, 9824057 (2022).
[40] [40] M. Ye, Y. Zhou, H.Y. Zhao, X.P. Wang, Magnetic microrobots with folate targeting for drug delivery. Cyborg. Bionic. Syst. 4, 0019 (2023).
[49] [49] F. Soto, E. Karshalev, F.Y. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al. (2021) Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403.
[56] [56] V.d. la Asunción-Nadal, M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Chalcogenides-based tubular micromotors in fluorescent assays. Anal. Chem. 92(13), 9188–9193 (2020).
[57] [57] Y.B. Zhang, L. Zhang, L.D. Yang, C.I. Vong, K.F. Chan et al., Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Sci. Adv. 5(1), eaau9650 (2019).
[80] [80] [M.S. Draz, N.K. Lakshminaraasimulu, S. Krishnakumar, D. Battalapalli, A. Vasan et al., Motion-based immunological detection of Zika virus using Pt nanomotors and a cellphone. ACS Nano 12(6), 5709–5718 (2018).
[83] [83] J. Orozco, Victor García-Gradilla, M. D’Agostino, W. Gao, A. Cortés et al., Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1), 818–824 (2013).
[98] [98] K. Villa, C.L. Manzanares Palenzuela, Z. Sofer, S. Matějková, M. Pumera, Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12), 12482–12491 (2018).
[103] [103] S. Solé, A. Merkoçi, S. Alegret, Determination of toxic substances based on enzyme inhibition. part I. electrochemical biosensors for the determination of pesticides using batch procedures. Crit. Rev. Anal. Chem. 33(2), 89–126 (2003).
[123] [123] S. Balasubramanian, D. Kagan, C.M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50(18), 4161–4164 (2011).
[129] [129] J. Simmchen, A. Baeza, D. Ruiz, M.J. Esplandiu, M. Vallet- Regí, Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. Small 8(13), 2053–2059 (2012).
[134] [134] Á. Molinero- Fernández, L. Arruza, M.Á. López, A. Escarpa, On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens. Bioelectron. 158, 112156 (2020).
[149] [149] S. Cinti, G. Valdés-Ramı́rez, W. Gao, J.X. Li, G. Palleschi et al., Microengine-assisted electrochemical measurements at printable sensor strips. Chem. Commun. 51(41), 8668–8671 (2015).
[154] [154] R. María-Hormigos, B. Jurado- Sánchez, A. Escarpa, Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal. Chem. 90(16), 9830–9837 (2018).
[162] [162] Y. Wang, Y.H. Liu, Y. Li, D.D. Xu, X. Pan et al., Magnetic nanomotor-based maneuverable SERS probe. Research 2020, 7962024 (2020).
[178] [178] K.S. Yuan, C. Cuntı́n-Abal, B. Jurado-Sánchez, A. Escarpa, Smartphone-based Janus micromotors strategy for motion-based detection of Glutathione. Anal. Chem. 93(49), 16385–16392 (2021).
[182] [182] Y.B. Wang, H. Chen, J.H. Law, X.Z. Du, J.F. Yu, Ultrafast miniature robotic swimmers with upstream motility. Cyborg. Bionic. Syst. 4, 0015 (2023).
[185] [185] J.C. Zhang, Z.Y. Ren, W.Q Hu, R.H. Soon, I.C. Yasa et al., Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 6(53) (2021).
[186] [186] W.Z. Yu, H.S. Lin, Y.L. Wang, X. He, N. Chen et al., A ferrobotic system for automated microfluidic logistics. Sci. Robot. 5(39), eaba4411 (2020).
[188] [188] L. Restrepo-Pérez, L. Soler, C. Martínez-Cisneros, S. S´anchez, O.G. Schmidt, Biofunctionalized self-propelled micromotors as an alternative on-chip concen-trating system. Lab Chip 14(16), 2914–2917 (2014).
[191] [191] S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), aav4317 (2019).
[194] [194] Z.G. Wu, L. Li, Y.R, Yang, P. Hu, Y. Li et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019).
Get Citation
Copy Citation Text
Qianqian Wang, Shihao Yang, Li Zhang. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform[J]. Nano-Micro Letters, 2024, 16(1): 040
Category: Research Articles
Received: Jun. 30, 2023
Accepted: Oct. 25, 2023
Published Online: Jan. 23, 2025
The Author Email: Wang Qianqian (qqwang@seu.edu.cn), Zhang Li (lizhang@mae.cuhk.edu.hk)