Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1326(2024)
Structure, Dielectric and Energy Storage Properties of Sr0.7Bi0.2ZrO3 Modified Bismuth Sodium Titanate Ceramics
[1] [1] LI D, ZHOU D, LIU W Y, et al. Enhanced energy storage properties achieved in Na0.5Bi0.5TiO3-based ceramics via composition design and domain engineering[J]. Chem Eng J, 2021, 419: 129601.
[2] [2] WANG W, ZHANG L Y, SHI W J, et al. Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy[J]. ACS Appl Mater Interfaces, 2023, 15(5): 6990-7001.
[3] [3] YANG H B, TIAN J H, LIN Y, et al. Realizing ultra-high energy storage density of lead-free 0.76Bi0.5Na0.5TiO3-0.24SrTiO3-Bi(Ni2/3Nb1/3)O3 ceramics under low electric fields[J]. Chem Eng J, 2021, 418: 129337.
[4] [4] QIAO X S, WU D, ZHANG F D, et al. Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field[J]. J Mater Chem C, 2019, 7(34): 10514-10520.
[5] [5] WANG W, ZHANG L Y, YANG Y L, et al. Enhancing energy storage performance in Na0.5Bi0.5TiO3-based lead-free relaxor ferroelectric ceramics along a stepwise optimization route[J]. J Mater Chem A, 2023, 11(6): 2641-2651.
[6] [6] YAN F, HUANG K W, JIANG T, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering[J]. Energy Storage Mater, 2020, 30: 392-400.
[7] [7] CAO W J, LIN R J, CHEN P F, et al. Phase and band structure engineering via linear additive in NBT-ST for excellent energy storage performance with superior thermal stability[J]. ACS Appl Mater Interfaces, 2022, 14(48): 54051-54062.
[8] [8] QI H, ZUO R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency[J]. J Mater Chem A, 2019, 7(8): 3971-3978.
[9] [9] GUO B, YAN Y, TANG M Y, et al. Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process[J]. Chem Eng J, 2021, 420: 130475.
[10] [10] LI D, ZHOU D, WANG D, et al. Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design[J]. Small, 2023, 19(8): e2206958.
[11] [11] WANG T, LIU J Q, KONG L, et al. Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics[J]. Ceram Int, 2020, 46(16): 25392-25398.
[12] [12] MA W G, ZHU Y W, ALI MARWAT M, et al. Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics[J]. J Mater Chem C, 2019, 7(2): 281-288.
[13] [13] ZHANG L Y, WANG Z Y, LI Y, et al. Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics[J]. J Eur Ceram Soc, 2019, 39(10): 3057-3063.
[14] [14] QIAO X S, WU D, ZHANG F D, et al. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics[J]. J Eur Ceram Soc, 2019, 39(15): 4778-4784.
[15] [15] LIU Z Y, ZHANG A, XU S C, et al. Mediating the confliction of polarizability and breakdown electric-field strength in BNST relaxor ferroelectric for energy storage applications[J]. J Alloys Compd, 2020, 823: 153772.
[16] [16] XU Z Q, LIU Z, DAI K, et al. Simultaneously achieving large energy density and high efficiency in NaNbO3-(Sr, Bi)TiO3-Bi(Mg, Zr)O3 relaxor ferroelectric ceramics for dielectric capacitor applications[J]. J Mater Chem A, 2022, 10(26): 13907-13916.
[17] [17] LI D, ZHOU D, WANG D, et al. Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy[J]. Adv Funct Mater, 2022, 32(15): 2111776.
[18] [18] YAN F, GE G L, QIAN J, et al. Gradient-structured ceramics with high energy storage performance and excellent stability[J]. Small, 2023, 19(6): e2206125.
[19] [19] WANG Z P, KANG R R, LIU W Y, et al. (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with medium permittivity featuring enhanced energy-storage density and excellent thermal stability[J]. Chem Eng J, 2022, 427: 131989.
[20] [20] GAO Y, ZHU X, YANG B, et al. Grain size modulated (Na0.5Bi0.5)0.65Sr0.35TiO3-based ceramics with enhanced energy storage properties[J]. Chem. Eng. J., 2022, 433: 133584.
[21] [21] WANG T, ZHANG L Y, ZHANG A Y, et al. Synergistic enhanced energy storage performance of NBT-KBT ceramics by K0.5Na0.5NbO3 composition design[J]. J Alloys Compd, 2023, 948: 169725.
[22] [22] LI D, XU D M, ZHAO W C, et al. A high-temperature performing and near-zero energy loss lead-free ceramic capacitor[J]. Energy Environ Sci, 2023, 16(10): 4511-4521.
[23] [23] QI H, XIE A W, TIAN A, et al. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics[J]. Adv Energy Mater, 2020, 10(6): 1903338.
[24] [24] ZHANG A Y, WANG T, LIU J X, et al. Significant improvement in energy storage for BT ceramics via NBT composition regulation[J]. J Alloys Compd, 2023, 968: 172255.
Get Citation
Copy Citation Text
ZHANG Aoyu, WANG Tong, LIU Jiaxiang, CHEN Jiahao, CHEN Wei, YANG Haibo. Structure, Dielectric and Energy Storage Properties of Sr0.7Bi0.2ZrO3 Modified Bismuth Sodium Titanate Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1326
Category:
Received: Oct. 6, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: Tong WANG (andyton85@163.com)