Laser & Optoelectronics Progress, Volume. 59, Issue 19, 1900001(2022)

Progress and Prospect of Fiber Lasers Operating at 1.7 μm Band

Hao Li1,2, Wei Huang1,2, Yulong Cui1,2, Wenxi Pei1,3, and Zefeng Wang1,2,3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, Hunan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan, China
  • show less
    Figures & Tables(14)
    Tm-doped fiber laser. (a) Spatially structure CW Tm-doped fiber laser operating at 1.7 μm band; (b) evolution of output power with wavelength[15]
    All-fiber structure CW Tm-doped fiber laser operating at 1.7 μm band. (a) Tunable wavelength; (b) fixed wavelength[18]
    Ring-cavity structure CW Tm-doped fiber laser operating at 1.7 μm band [25]
    Raman fiber laser operating at 1.7 μm band based on the stimulated Raman scattering [2]
    Raman soliton fiber laser operating at 1.7 μm band based on the soliton self-frequency shift[57]
    Fiber optical parametric oscillator operating at 1.7 μm band based on the four-wave mixing[60]
    Super-continuum spectrum light source operating at 1.7 μm band [8]
    Quasi-all-fiber single-pass structure pulsed fiber hydrogen Raman laser operating at 1.7 μm band (insert: schematic diagram of cross section of used hollow-core fibers)[90]
    All-fiber resonant cavity structure CW fiber hydrogen Raman laser operating at 1.7 μm band[97]
    • Table 1. Progress of CW fiber laser operating at 1.7 μm band based on rare-earth-doped fibers

      View table

      Table 1. Progress of CW fiber laser operating at 1.7 μm band based on rare-earth-doped fibers

      Year

      Fiber

      type

      Cavity

      scheme

      Pump wavelength /nmOutput wavelength /nmOutput power /WSlope efficiency /%Line width /pmRef.
      2004TDFLinear7901734-1736≤0.001≤0.2≈3014
      2006TDFLinear15651723-19732-8.4≤46≤50015
      2008TDFLinear7901650-2100<0.02382.8×10516
      2013TTDFRing12101635.6-1766≤1.6×10-4≤0.234
      2014THDFRing15501727-2030≤0.408≤42.635
      2014BDFLinear15681625-1775≤0.6≤2036
      2015TDFLinear790,15651740-20700.517
      2015TDFLinear15651660-1720,17260.065-1.5,12.6≤46,63—,7018
      2015BDFLinear156817001.0533≈4×10337
      2015TDFLinear155017500.423.55420
      2016TDFLinear155017071.2836.14421
      2017TDFLinear155017073.1542.15022
      2019TDFLinear158017264780≈3×10319
      2020TDFLinear155017232×10-418023
      2020TDFRing15701712-17200.1-0.227≤10.323.724
      2020TDFRing157017202.3650.23925
      2021TDFLinear161017270.0124.818.5×10-529
      2021TDFRing157017200.40722.74.3×10-526
      2021TDFRing157017201.1146.41.8×10-527
      2021TDFLinear156017201.13687528
    • Table 2. Progress of pulsed fiber laser operating at 1.7 μm band based on rare-earth-doped fibers

      View table

      Table 2. Progress of pulsed fiber laser operating at 1.7 μm band based on rare-earth-doped fibers

      Year

      Fiber

      type

      Pulse generation methodPump wavelength /nmOutput wavelength/nmOutput average power /mW

      Pulse

      width

      Power

      conversion efficiency /%

      Ref.
      2016BDFMode-locked15651730101.65 ps0.838
      2016THDFMode-locked15561705-18052-12630-950 fs0.1-0.539
      2017TDFMode-locked15601785264445 fs1030
      2018THDFIM121117813.41.4 μs1.441
      2018BDFMode-locked1570170020.428 ps,630 fs440
      2018TDFGain switch15601690-1765284-654190 ns,150 ns10.7-24.89
      2019TDFMode-locked1650175050-2510.8-3.7 ns1-531
      2020TDFGain switch15601700,1725,1750582,668,75316.7 ns<25.110
      2020TDFMode-locked15651740-1892<1802.76 ps<1033
      2021TDFMode-locked156017463.55230 fs0.332
    • Table 3. Progress of CW fiber laser operating at 1.7 μm band based on nonlinear effects

      View table

      Table 3. Progress of CW fiber laser operating at 1.7 μm band based on nonlinear effects

      YearFiber typeNonlinear effectsPump wavelength /nmOutput wavelength /nmOutput power /WEfficiency /%Line width /pmRef.
      2011SMFSRS154217084<10002
      2012PMRFSRS156416790.27567(slope)2742
      2013PMRFSRS156416800.51467(slope)2443
      2014MMFSRS15451638-16753.627.7(power conversion)<30044
      2017HNLFSRS1539-15631652-16806.3×10-523.245
      2018RFSRS1064167666.942.4(power conversion)767046
      2018RFSRS106216916.921(power conversion)470047
      2019PMSMFSRS15501655,16796.2,579,64(power conversion)5000,160048
      2019RFSRS1055-10721695-172510-14.425.6(power conversion)<1×10449
      2020RFSRS1117169210437(power conversion)200051
      2020CCFSRS106617212.166(power conversion)424050
    • Table 4. Progress of pulsed fiber laser operating at 1.7 μm band based on nonlinear effects

      View table

      Table 4. Progress of pulsed fiber laser operating at 1.7 μm band based on nonlinear effects

      Year

      Fiber

      type

      Nonlinear effectsPump wavelength /nmOutput wavelength /nmOutput average power /mW

      Pulse

      width

      Power

      conversion efficiency /%

      Ref.
      2011HNLFSC15601350-200030122 fs7
      2011LMAFSSFS15441560-170087-277200 fs8-2755
      2011LMAFSSFS15501580-213020-284>70 fs56
      2013LMAPCFSSFS15601600-1780126-54680-95 fs28-4457
      2014HNLFSC16711400-190060<137 fs508
      2015HNLFSRS15391651110890 ps11.552
      2015CCFSRS156516864400128 ns27.253
      2016HNPCFSC15641600-2180100015 ps3763
      2017LMAFSC15501350-1700230-33050 fs10-2064
      2017DSFSSFS16001700-1740<26.8196 fs<8058
      2018DSFFWM1546-15681617-1876<14.3>14 ps<2060
      2018DSFFWM15601620-1870<20414.5 ps<2061
      2019PMVMAFSSFS14801620-1990<1500>120 fs<359
      2019HNASMFSC19141700-233092865 fs3265
      2020RFSRS1117169323×103100 μs-100 ms851
      2020HGDFSRS15411652-165498.531 ns<3.254
      2020DSFFWM155017001420450 fs2062
    • Table 5. Progress of fiber gas Raman laser operating at 1.7 μm band based on hollow-core fibers

      View table

      Table 5. Progress of fiber gas Raman laser operating at 1.7 μm band based on hollow-core fibers

      YearSystem structure

      Raman

      gas

      Pump wavelength /nmOutput wavelength /nm

      Output

      average power /W

      Pulse width /nsOptical conversion efficiency /%Line width /pmRef.
      2019Quasi-all-fiberDeuterium1535-15651640-16740.812605.299
      2020Quasi-all-fiberDeuterium1540-15501645-16562.91258<200100
      2020Quasi-all-fiberHydrogen155017050.51232<20090
      2020Quasi-all-fiberHydrogen1535-15651687-17230.81060<20091
      2020Quasi-all-fiberHydrogen1540-15501693-17053.31360<20093
      2021

      All-fiber

      (single-pass)

      Hydrogen154016932.15CW31<20094
      2021

      All-fiber

      (single-pass)

      Hydrogen1540-15501693-17051.631058<20095
      2021

      All-fiber

      (single-pass)

      Deuterium1538-15501643-16561.22046<20096
      2021All-fiber(oscillator)Hydrogen154016931.8CW62<20097
      2021All-fiber(oscillator)Hydrogen154016931.53054<20098
    Tools

    Get Citation

    Copy Citation Text

    Hao Li, Wei Huang, Yulong Cui, Wenxi Pei, Zefeng Wang. Progress and Prospect of Fiber Lasers Operating at 1.7 μm Band[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 15, 2021

    Accepted: Jan. 17, 2022

    Published Online: Oct. 12, 2022

    The Author Email: Wang Zefeng (zefengwang_nudt@163.com)

    DOI:10.3788/LOP202259.1900001

    Topics