Journal of the Chinese Ceramic Society, Volume. 52, Issue 11, 3482(2024)
Site Occupation Engineering Regulation of Eu2+ in Oxide-Based Red Phosphor Sr3Ga4O9:Eu2+
[1] [1] ZHAO M, ZHANG Q Y, XIA Z G. Structural engineering of Eu2+-doped silicates phosphors for LED applications[J]. Acc Mater Res, 2020, 1(2): 137–145.
[2] [2] HARIYANI S, SJKA M, SETLUR A, et al. A guide to comprehensive phosphor discovery for solid-state lighting[J]. Nat Rev Mater, 2023, 8: 759–775.
[3] [3] LI J H, YAN J, WEN D W, et al. Advanced red phosphors for white light-emitting diodes[J]. J Mater Chem C, 2016, 4(37): 8611–8623.
[4] [4] XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs[J]. Prog Mater Sci, 2016, 84: 59–117.
[5] [5] HOERDER G J, SEIBALD M, BAUMANN D, et al. Sr[Li2Al2O2N2]: Eu2+-A high performance red phosphor to brighten the future[J]. Nat Commun, 2019, 10(1): 1824.
[6] [6] HU T, GAO Y, MOLOKEEV M S, et al. Eu2+ stabilized at octahedrally coordinated Ln3+ site enabling red emission in Sr3LnAl2O7.5(Ln = Y or Lu) phosphors[J]. Adv Opt Mater, 2021, 9(9): 2100077.
[7] [7] HU Y S, ZHUANG W D, YE H Q, et al. Preparation and luminescent properties of (Ca1-x, Srx)S: Eu2+ red-emitting phosphor for white LED[J]. J Lumin, 2005, 111(3): 139–145.
[8] [8] QIN X, LIU X W, HUANG W, et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects[J]. Chem Rev, 2017, 117(5): 4488–4527.
[9] [9] DORENBOS P. A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds[J]. ECS J Solid State Sci Technol, 2012, 2(2): R3001–R3011.
[10] [10] QIAO J W, AMACHRAA M, MOLOKEEV M, et al. Engineering of K3YSi2O7 to tune photoluminescence with selected activators and site occupancy[J]. Chem Mater, 2019, 31(18): 7770–7778.
[11] [11] QIAO J W, NING L X, MOLOKEEV M S, et al. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7: Eu phosphor[J]. Angew Chem Int Ed, 2019, 58(33): 11521–11526.
[12] [12] QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J]. Nat Commun, 2019, 10(1): 5267.
[13] [13] YANG Z Y, ZHOU Y Y, QIAO J W, et al. Rapid synthesis of red-emitting Sr2Sc0.5Ga1.5O5: Eu2+ phosphors and the tunable photoluminescence via Sr/Ba substitution[J]. Adv Opt Mater, 2021, 9(16): 2100131.
[14] [14] HU T, NING L X, GAO Y, et al. Glass crystallization making red phosphor for high-power warm white lighting[J]. Light Sci Appl, 2021, 10(1): 56.
[15] [15] CHEN W B, WANG Y Z, XU J, et al. Red-emitting cordierite ceramic enabling general healthy warm white laser lighting[J]. Laser Photonics Rev, 2023: 2300963.
[16] [16] YANG Z Y, ZHAO Y F, ZHOU Y Y, et al. Giant red-shifted emission in (Sr, Ba)Y2O4: Eu2+ phosphor toward broadband near-infrared luminescence[J]. Adv Funct Materials, 2022, 32(1): 2103927.
[17] [17] XIA Z G, LIU G K, WEN J G, et al. Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1–xSi2O6 solid solution[J]. J Am Chem Soc, 2016, 138(4): 1158–1161.
[18] [18] XIA Z G, MA C G, MOLOKEEV M S, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x) O7: Eu2+ phosphor[J]. J Am Chem Soc, 2015, 137(39): 12494–12497.
[19] [19] LAI S Q, ZHAO M, ZHAO Y F, et al. Eu2+ doping concentration- induced site-selective occupation and photoluminescence tuning in KSrScSi2O7: Eu2+ phosphor[J]. ACS Mater Au, 2022, 2(3): 374–380.
[20] [20] KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal- quenching phosphor[J]. Nat Mater, 2017, 16(5): 543–550.
[21] [21] XIONG P X, PENG M Y, QIN K X, et al. Visible to near-infrared persistent luminescence and mechanoluminescence from Pr3+-doped LiGa5O8 for energy storage and bioimaging[J]. Adv Opt Mater, 2019, 7(24): 1901107.
[22] [22] PU C D, QIN H Y, GAO Y, et al. Synthetic control of exciton behavior in colloidal quantum dots[J]. J Am Chem Soc, 2017, 139(9): 3302–3311.
[23] [23] LIU Z C, ZHAO L, CHEN W B, et al. Effects of the deep traps on the thermal-stability property of CaAl2O4: Eu2+ phosphor[J]. J Am Ceram Soc, 2018, 101(8): 3480–3488.
[24] [24] IWAKI M, KUMAGAI S, KONISHI S, et al. Blue-yellow multicolor phosphor, Eu2+-activated Li3NaSiO4: Excellent thermal stability and quenching mechanism[J]. J Alloys Compd, 2019, 776: 1016–1024.
[25] [25] FANG S Q, LANG T C, HAN T, et al. Zero-thermal-quenching of Mn4+ far-red-emitting in LaAlO3 perovskite phosphor via energy compensation of electrons’ traps[J]. Chem Eng J, 2020, 389: 124297.
Get Citation
Copy Citation Text
KUANG Yuhang, ZHU Yingze, XIA Zhiguo. Site Occupation Engineering Regulation of Eu2+ in Oxide-Based Red Phosphor Sr3Ga4O9:Eu2+[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3482
Category:
Received: Dec. 16, 2023
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: Zhiguo XIA (xiazg@scut.edu.cn)