Journal of the Chinese Ceramic Society, Volume. 52, Issue 11, 3482(2024)

Site Occupation Engineering Regulation of Eu2+ in Oxide-Based Red Phosphor Sr3Ga4O9:Eu2+

KUANG Yuhang... ZHU Yingze and XIA Zhiguo* |Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
  • show less
    References(25)

    [1] [1] ZHAO M, ZHANG Q Y, XIA Z G. Structural engineering of Eu2+-doped silicates phosphors for LED applications[J]. Acc Mater Res, 2020, 1(2): 137–145.

    [2] [2] HARIYANI S, SJKA M, SETLUR A, et al. A guide to comprehensive phosphor discovery for solid-state lighting[J]. Nat Rev Mater, 2023, 8: 759–775.

    [3] [3] LI J H, YAN J, WEN D W, et al. Advanced red phosphors for white light-emitting diodes[J]. J Mater Chem C, 2016, 4(37): 8611–8623.

    [4] [4] XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs[J]. Prog Mater Sci, 2016, 84: 59–117.

    [5] [5] HOERDER G J, SEIBALD M, BAUMANN D, et al. Sr[Li2Al2O2N2]: Eu2+-A high performance red phosphor to brighten the future[J]. Nat Commun, 2019, 10(1): 1824.

    [6] [6] HU T, GAO Y, MOLOKEEV M S, et al. Eu2+ stabilized at octahedrally coordinated Ln3+ site enabling red emission in Sr3LnAl2O7.5(Ln = Y or Lu) phosphors[J]. Adv Opt Mater, 2021, 9(9): 2100077.

    [7] [7] HU Y S, ZHUANG W D, YE H Q, et al. Preparation and luminescent properties of (Ca1-x, Srx)S: Eu2+ red-emitting phosphor for white LED[J]. J Lumin, 2005, 111(3): 139–145.

    [8] [8] QIN X, LIU X W, HUANG W, et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects[J]. Chem Rev, 2017, 117(5): 4488–4527.

    [9] [9] DORENBOS P. A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds[J]. ECS J Solid State Sci Technol, 2012, 2(2): R3001–R3011.

    [10] [10] QIAO J W, AMACHRAA M, MOLOKEEV M, et al. Engineering of K3YSi2O7 to tune photoluminescence with selected activators and site occupancy[J]. Chem Mater, 2019, 31(18): 7770–7778.

    [11] [11] QIAO J W, NING L X, MOLOKEEV M S, et al. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7: Eu phosphor[J]. Angew Chem Int Ed, 2019, 58(33): 11521–11526.

    [12] [12] QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J]. Nat Commun, 2019, 10(1): 5267.

    [13] [13] YANG Z Y, ZHOU Y Y, QIAO J W, et al. Rapid synthesis of red-emitting Sr2Sc0.5Ga1.5O5: Eu2+ phosphors and the tunable photoluminescence via Sr/Ba substitution[J]. Adv Opt Mater, 2021, 9(16): 2100131.

    [14] [14] HU T, NING L X, GAO Y, et al. Glass crystallization making red phosphor for high-power warm white lighting[J]. Light Sci Appl, 2021, 10(1): 56.

    [15] [15] CHEN W B, WANG Y Z, XU J, et al. Red-emitting cordierite ceramic enabling general healthy warm white laser lighting[J]. Laser Photonics Rev, 2023: 2300963.

    [16] [16] YANG Z Y, ZHAO Y F, ZHOU Y Y, et al. Giant red-shifted emission in (Sr, Ba)Y2O4: Eu2+ phosphor toward broadband near-infrared luminescence[J]. Adv Funct Materials, 2022, 32(1): 2103927.

    [17] [17] XIA Z G, LIU G K, WEN J G, et al. Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1–xSi2O6 solid solution[J]. J Am Chem Soc, 2016, 138(4): 1158–1161.

    [18] [18] XIA Z G, MA C G, MOLOKEEV M S, et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x) O7: Eu2+ phosphor[J]. J Am Chem Soc, 2015, 137(39): 12494–12497.

    [19] [19] LAI S Q, ZHAO M, ZHAO Y F, et al. Eu2+ doping concentration- induced site-selective occupation and photoluminescence tuning in KSrScSi2O7: Eu2+ phosphor[J]. ACS Mater Au, 2022, 2(3): 374–380.

    [20] [20] KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal- quenching phosphor[J]. Nat Mater, 2017, 16(5): 543–550.

    [21] [21] XIONG P X, PENG M Y, QIN K X, et al. Visible to near-infrared persistent luminescence and mechanoluminescence from Pr3+-doped LiGa5O8 for energy storage and bioimaging[J]. Adv Opt Mater, 2019, 7(24): 1901107.

    [22] [22] PU C D, QIN H Y, GAO Y, et al. Synthetic control of exciton behavior in colloidal quantum dots[J]. J Am Chem Soc, 2017, 139(9): 3302–3311.

    [23] [23] LIU Z C, ZHAO L, CHEN W B, et al. Effects of the deep traps on the thermal-stability property of CaAl2O4: Eu2+ phosphor[J]. J Am Ceram Soc, 2018, 101(8): 3480–3488.

    [24] [24] IWAKI M, KUMAGAI S, KONISHI S, et al. Blue-yellow multicolor phosphor, Eu2+-activated Li3NaSiO4: Excellent thermal stability and quenching mechanism[J]. J Alloys Compd, 2019, 776: 1016–1024.

    [25] [25] FANG S Q, LANG T C, HAN T, et al. Zero-thermal-quenching of Mn4+ far-red-emitting in LaAlO3 perovskite phosphor via energy compensation of electrons’ traps[J]. Chem Eng J, 2020, 389: 124297.

    Tools

    Get Citation

    Copy Citation Text

    KUANG Yuhang, ZHU Yingze, XIA Zhiguo. Site Occupation Engineering Regulation of Eu2+ in Oxide-Based Red Phosphor Sr3Ga4O9:Eu2+[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3482

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 16, 2023

    Accepted: Dec. 13, 2024

    Published Online: Dec. 13, 2024

    The Author Email: Zhiguo XIA (xiazg@scut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230969

    Topics