Laser & Optoelectronics Progress, Volume. 58, Issue 9, 0900005(2021)

Review on Methods for Laser Linewidth Measurement

Mingbin Cui1, Jungang Huang2, and Xiulun Yang1、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao , Shandong 266237, China
  • 2Guangdong Raying Laser Technology Co. Ltd., Dongguan , Guangdong 523808, China
  • show less
    References(73)

    [1] Gu J B, Zhu F N, Liu L et al. 1550 nm laser source with narrow linewidth and high tuning bandwidth[J]. Chinese Journal of Lasers, 46, 0901003(2019).

    [2] Bai Y, Yan F P, Feng T et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF[J]. Chinese Journal of Lasers, 46, 0101003(2019).

    [3] Hu J, Wang Y F, Xing Z K et al. Narrow-linewidth random fiber laser based on random fiber grating[J]. Acta Optica Sinica, 40, 1614002(2020).

    [4] Fan S B, Xu H C, Xiang X. Multi-point optical fiber sensing technology for methane detection[J]. Laser & Optoelectronics Progress, 47, 100602(2010).

    [5] Tian P F, Sun X X. Single longitudinal-mode and narrow linewidth fiber lasers[J]. Optical Fiber & Electric Cable and Their Applications, 16-19(2010).

    [6] Xue L F, Zhang Q, Li F et al. High-frequency modulation, high-power and narrow-linewidth distributed feedback fiber laser[J]. Acta Physica Sinica, 60, 307-311(2011).

    [7] Lu D, Yang Q L, Wang H et al. Review of semiconductor distributed feedback lasers in the optical communication band[J]. Chinese Journal of Lasers, 47, 0701001(2020).

    [8] Liu D. Underwater target detection system based on chaotic demodulation technology of fiber optic sonar[D](2019).

    [9] Xu D, Lu B, Yang F et al. Narrow linewidth single-frequency laser noise measurement based on a 3×3 fiber coupler[J]. Chinese Journal of Lasers, 43, 0102004(2016).

    [10] Von Bandel N, Myara M, Sellahi M et al. Time-dependent laser linewidth: beat-note digital acquisition and numerical analysis[J]. Optics Express, 24, 27961-27978(2016).

    [11] Zhu N H[M]. Microwave packaging and testing of optoelectronic devices, 126-127(2011).

    [12] Qi X Y. Phase frequency noise and linewidth characteristics of narrow linewidth semiconductor lasers[D](2019).

    [13] San H S, Wen J M, Liu J et al. Measurement system of ultra-wideband frequency response based on optical heterodyne technique[J]. Acta Optica Sinica, 25, 1497-1500(2005).

    [14] Li Y C, Wang C H, Qu Y. Study on magnetostrictive coefficient based on multi-beam laser heterodyne[J]. Chinese Journal of Lasers, 39, s108005(2012).

    [15] Xu Y P. Single frequency self-Q-switched laser based on gain grating injection locking and its linewidth measurement[D](2018).

    [16] Maher R, Thomsen B. Dynamic linewidth measurement technique using digital intradyne coherent receivers[J]. Optics Express, 19(2011).

    [17] Wu L H. Laser line-width measurement and research of the external-cavity performance improvement[D](2012).

    [18] Wang K N, Liu Y L, Chen H B et al. Line-width measurement of DFB laser based on frequency shift delay self-heterodyning method[J]. Laser Technology, 42, 633-637(2018).

    [19] Dawson J W, Park N, Vahala K J. An improved delayed self-heterodyne interferometer for linewidth measurements[J]. IEEE Photonics Technology Letters, 4, 1063-1066(1992).

    [20] Peng J X. The research of linewidth measurement system of narrow linewidth laser[D](2015).

    [21] Canagasabey A, Canagasabey A, Michie A et al. A comparison of Michelson and Mach-Zehnder interferometers for laser linewidth measurements[C](2011).

    [22] Chen J P, Liu T, Dong R F et al. Theoretical analysis of LC-RDSHI based on Michelson interferometer for laser linewidth measurement[J]. Journal of Time and Frequency, 40, 11-18(2017).

    [23] Chen M, Meng Z, Zhang Y C et al. Ultranarrow-linewidth Brillouin/erbium fiber laser based on 45-cm erbium-doped fiber[J]. IEEE Photonics Journal, 7, 1-6(2015).

    [24] Chen M, Meng Z, Wang J F et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 23, 6803-6808(2015).

    [25] Kuntz M. A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 57, 819-824(1997).

    [26] Chen M, Meng Z, Tu X B et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 38, 2041-2043(2013).

    [27] Chen M, Meng Z, Sun Q et al. Mechanism and characteristics of a fast-tuning Brillouin/erbium fiber laser[J]. Optics Express, 22, 15039-15048(2014).

    [28] He Y X, Hu S L, Liang S et al. High-precision narrow laser linewidth measurement based on coherent envelope demodulation[J]. Optical Fiber Technology, 50, 200-205(2019).

    [29] Huang S H, Zhu T, Cao Z Z et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope[J]. IEEE Photonics Technology Letters, 28, 759-762(2016).

    [30] Deng S, Li M, Gao H Y et al. A recirculating delayed self-heterodyne method using a Mach-Zehnder modulator for kHz-linewidth measurement[J]. Optical Fiber Technology, 31, 156-160(2016).

    [31] Huang S H, Zhu T, Liu M et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 7, 41988(2017).

    [32] Wang Z, Ke C, Zhong Y et al. Ultra-narrow-linewidth measurement utilizing dual-parameter acquisition through partially coherent light interference[J]. Optics Express, 28, 8484-8493(2020).

    [33] Yu P. A novel scheme for hundred-hertz linewidth measurements with the self-heterodyne method[J]. Chinese Physics Letters, 30, 084208(2013).

    [34] Dong Y K, Lu Z W, Lu Y L et al. A new method of measuring ultra-narrow laser line-width[J]. Journal of Harbin Institute of Technology, 37, 670-673(2005).

    [35] Di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics, 49, 4801-4807(2010).

    [36] Wang S L. Research on linewidth measurement system of 2 μm band narrow band laser based on cross correlation method[D](2019).

    [37] Qi X Y, Chen C, Qu Y et al. Complete frequency domain analysis for linewidth of narrow linewidth lasers[J]. Spectroscopy and Spectral Analysis, 39, 2354-2359(2019).

    [38] Bai Y, Yan F P, Feng T et al. Demonstration of linewidth measurement based on phase noise analysis for a single frequency fiber laser in the 2 μm band[J]. Laser Physics, 29, 075102(2019).

    [39] Cao C Y, Yao Q, Rao W et al. Linewidth measurement using unbalanced fiber-optic interferometer for narrow linewidth lasers[J]. Chinese Journal of Lasers, 38, 0508005(2011).

    [40] Horak P, Loh W H. On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers[J]. Optics Express, 14, 3923-3928(2006).

    [41] Mercer L B. 1/f frequency noise effects on self-heterodyne linewidth measurements[J]. Journal of Lightwave Technology, 9, 485-493(1991).

    [42] Gallion P, Mendieta F J, Leconte R. Single-frequency laser phase-noise limitation in single-mode optical-fiber coherent-detection systems with correlated fields[J]. Journal of the Optical Society of America, 72, 1167-1170(1982).

    [43] Lauterbach K U, Schneider T, Henker R et al. Fast and simple high resolution optical spectrum analyzer[C](2008).

    [45] Shi H X, Wu T. Basic requirements of the delayed self heterodyne spectrum measurement system[J]. Journal of Beijing University of Posts and Telecommunications, 20, 55-60(1997).

    [46] Yu B L, Mu S H, Wu X Q et al. The phase noise and sensitivity analysis of a novel optical fiber interferometer[J]. Journal of Anhui University (Natural Sciences), 30, 53-57(2006).

    [47] Fleming M, Mooradian A. Spectral characteristics of external-cavity controlled semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 17, 44-59(1981).

    [48] Yu B L, Zhen S L, Zhu J et al. Experimental study on low-noise fiber laser[J]. Acta Optica Sinica, 26, 217-220(2006).

    [49] Zhou B K, Gao Y Z, Chen J H et al[M]. Laser principle(1984).

    [50] Chen X P, Han M, Zhu Y Z et al. Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement[J]. Applied Optics, 45, 7712(2006).

    [51] Murakami M, Saito S. Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems[J]. IEEE Photonics Technology Letters, 4, 1269-1272(1992).

    [52] Jia Y D, Ou P, Zhang C X et al. Laser linewidth measurement error analysis and correction on fiber delayed self-heterodyne interferometer[J]. Chinese Journal of Lasers, 35, 65-68(2008).

    [53] Wu T, Hui R Q, Zhang J P et al. An all fiber self-heterodyne speetrum measurement system with two-windows and high resolution[J]. Journal of Beijing University of Posts and Telecommunications, 13, 1-6(1990).

    [54] Park N, Dawson J W, Vahala K J. Linewidth and frequency jitter measurement of an erbium-doped fiber ring laser by using a loss-compensated, delayed self-heterodyne interferometer[J]. Optics Letters, 17, 1274-1276(1992).

    [55] Hou H F, Jing M Y, Hu J Y et al. Laser linewidth measurement at Fourier limit resolution[J]. Laser & Optoelectronics Progress, 56, 081402(2019).

    [56] Xie D H, Deng D P, Guo L et al. Line-width measurement method of narrow line width lasers[J]. Laser & Optoelectronics Progress, 50, 010006(2013).

    [57] Iiyama K, Hayashi K, Ida Y et al. Delayed self-homodyne method using solitary monomode fibre for laser linewidth measurements[J]. Electronics Letters, 25, 1589(1989).

    [58] Iiyama K, Hayashi K, Ida Y et al. Reflection-type delayed self-homodyne/heterodyne method for optical linewidth measurements[J]. Journal of Lightwave Technology, 9, 635-640(1991).

    [59] Ali A H. Simultaneous measurements for tunable laser source linewidth with homodyne detection[J]. Computer and Information Science, 4, 138-144(2011).

    [60] Okoshi T, Kikuchi K, Nakayama A. Novel method for high resolution measurement of laser output spectrum[J]. Electronics Letters, 16, 630-631(1980).

    [61] Richter L, Mandelberg H, Kruger M et al. Linewidth determination from self-heterodyne measurements with subcoherence delay times[J]. IEEE Journal of Quantum Electronics, 22, 2070-2074(1986).

    [62] Dawson J W, Park N, Vahala K J. An improved delayed self-heterodyne interferometer for linewidth measurements[J]. IEEE Photonics Technology Letters, 4, 1063-1066(1992).

    [63] Kersey A D, Marrone M J, Davis M A. Polarisation-insensitive fibre optic Michelson interferometer[J]. Electronics Letters, 27, 518-520(1991).

    [64] Ferreira L A, Santos J L, Farahi F. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements[J]. Applied Optics, 34, 6399-6402(1995).

    [65] Liu Y, Qiu S F, Liu B et al. A polarization-independent high-precision measurement method for ultra-narrow laser linewidth[J]. Study on Optical Communications, 45-48(2013).

    [66] Chen J P. Theoretical and experimental study on the improvement of laser linewidth measurement method based on delayed self heterodyne interferometer[D](2016).

    [67] Nicati P A, Toyama K, Huang S et al. Temperature effects in a Brillouin fiber ring laser[J]. Optics Letters, 18, 2123-2125(1993).

    [68] Nicati P A, Toyama K, Shaw H J. Frequency stability of a Brillouin fiber ring laser[J]. Journal of Lightwave Technology, 13, 1445-1451(1995).

    [69] Zhang F R, Wang Z S, Zhang J X. Research on PMD mitigation in 100 Gbit/s WDM transmission systems[J]. Study on Optical Communications, 22-24(2012).

    [70] Shi S P. Newly progress over 100 Gbit/s standards[J]. Telecom Engineering Technics and Standardization, 23, 42-44(2010).

    [71] Yang T P, Dai G C, Du Z et al. Research on standards and key technologies of beyond 100 Gbit/s OTN[J]. Telecom Engineering Technics and Standardization, 30, 32-36(2017).

    [72] Wang Z F, Hu Y M, Meng Z et al. Physical mechanism and solution of aliasing in phase generated carrier modulation-demodulation of interferometric fiber-optic hydrophone[J]. Acta Optica Sinica, 28, 92-98(2008).

    [73] Cao J N, Zhang L K, Li X Y et al. Phase modulation and demodulation of interferometric fiber-optic-hydrophone using phase generated carrier techniques[J]. Acta Optica Sinica, 19, 1536-1540(1999).

    Tools

    Get Citation

    Copy Citation Text

    Mingbin Cui, Jungang Huang, Xiulun Yang. Review on Methods for Laser Linewidth Measurement[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 2, 2020

    Accepted: Sep. 22, 2020

    Published Online: May. 12, 2021

    The Author Email: Yang Xiulun (xlyang@sdu.edu.cn)

    DOI:10.3788/LOP202158.0900005

    Topics