Acta Photonica Sinica, Volume. 52, Issue 10, 1052421(2023)

Liquid Crystal-based Wide-angle Terahertz Tunable Metasurface Absorber

Yueyang JING, Peili LI*, Yajie ZHANG, Yang CAO, and Yu CHEN
Author Affiliations
  • College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • show less
    References(29)

    [1] A G DAVIES, E H LINFIELD, M B JOHNSTON. The development of terahertz sources and their applications. Physics in Medicine and Biology, 47, 3679-3689(2002).

    [2] M TONOUCHI. Cutting-edge terahertz technology. Nature Photonics, 1, 97-105(2007).

    [3] K FUJITA, S JUNG, Y JIANG et al. Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics, 7, 1795-1817(2018).

    [4] R A LEWIS. A review of terahertz detectors. Journal of Physics D-Applied Physics, 52, 433001(2019).

    [5] D R SMITH, J B PENDRY, M C K WILTSHIRE. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [6] Y LIU, X ZHANG. Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 40, 2494-2507(2011).

    [7] Q HE, S SUN, L ZHOU. Review article tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [8] X WAN, W X JIANG, H F MA et al. A broadband transformation-optics metasurface lens. Applied Physics Letters, 104, 151601(2014).

    [9] Y T ZHAO, B WU, B J HUANG et al. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Optics Express, 25, 7161-7169(2017).

    [10] P AGARWAL, K KISHOR, R K SINHA. Ultrasensitive dual-band terahertz metasurface sensor based on all InSb resonator. Optics Communications, 522, 128667(2022).

    [11] M A NEBIOGLU, T TAKAN, H ALTAN et al. An indium tin oxide metasurface filter for terahertz applications: design, fabrication, and characterization. Modern Physics Letters B, 31, 1750074(2017).

    [12] L CONG, N XU, W ZHANG et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry. Advanced Optical Materials, 3, 1176-1183(2015).

    [13] O TSILIPAKOS, A C TASOLAMPROU, A PITILAKIS et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Advanced Optical Materials, 8, 2000783(2020).

    [14] Z MIAO, Q WU, X LI et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Physical Review X, 5, 041027(2015).

    [15] G WANG, H TIAN, J WANG et al. Electronically controlled flexible terahertz metasurface based on the loss modulation of strontium titanate. Optics Letters, 47, 94-97(2022).

    [16] P YAGHMAEE, O H KARABEY, B BATES et al. Electrically tuned microwave devices using liquid crystal technology. International Journal of Antennas and Propagation, 2013, 824214(2013).

    [17] Hongyan DU, Zidong ZHANG, Rui TIAN et al. Research progress in broadband absorber based on artificial electromagnetic medium. Journal of Materials Engineering, 48, 23-33(2020).

    [18] Z YIN, Y LU, T XIA et al. Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal. Rsc Advances, 8, 4197-4203(2018).

    [19] Z YIN, C WAN, G DENG et al. Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal. Applied Sciences-Basel, 8, 2454(2018).

    [20] G DENG, H HU, H MO et al. Tunable terahertz metamaterial wideband absorber with liquid crystal. Optical Materials Express, 11, 4026-4635(2021).

    [21] G DENG, H HU, H MO et al. Liquid crystal-based wide-angle metasurface absorber with large frequency tunability and low voltage. Optics Express, 30, 22550-22561(2022).

    [23] I C KHOO. Nonlinear optics of liquid crystalline materials. Physics Reports-Review Section of Physics Letters, 471, 221-267(2009).

    [24] S SUI, H MA, J WANG et al. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber. Journal of Physics D-Applied Physics, 48, 215101(2015).

    [25] Y JIA, J WANG, W CHEN et al. Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms. Journal of Radars, 10, 220-239(2021).

    [26] G VENTER, J SOBIESZCZANSKI-SOBIESKI. Particle swarm optimization. Aiaa Journal, 41, 1583-1589(2003).

    [27] C L HOLLOWAY, E F KUESTER, D NOVOTNY. Waveguides composed of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials. IEEE Antennas and Wireless Propagation Letters, 8, 525-539(2009).

    [28] G DENG, T XIA, S JING et al. A tunable metamaterial absorber based on liquid crystal intended for F frequency band. IEEE Antennas and Wireless Propagation Letters, 16, 2062-2065(2017).

    [29] G DENG, Y LU, Z YIN et al. A tunable polarization-dependent terahertz metamaterial absorber based on liquid crystal. Electronics, 7, 27(2018).

    [30] J F LV, C DING, F Y MENG et al. A tunable metamaterial absorber based on liquid crystal with the compact unit cell and the wideband absorption. Liquid Crystals, 48, 1438-1447(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yueyang JING, Peili LI, Yajie ZHANG, Yang CAO, Yu CHEN. Liquid Crystal-based Wide-angle Terahertz Tunable Metasurface Absorber[J]. Acta Photonica Sinica, 2023, 52(10): 1052421

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 29, 2023

    Accepted: Oct. 18, 2023

    Published Online: Dec. 5, 2023

    The Author Email: LI Peili (lipl@njupt.edu.cn)

    DOI:10.3788/gzxb20235210.1052421

    Topics