Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1006(2022)
Research Progresses on Structures and Properties of Phosphate Glasses
[1] [1] SAHAR M R, ASTUTI B, ROHANI M S. The physical properties of P2O5-Sm2O3-MnO2 glass system[J]. Opt Rev, 2006, 13(2): 101-103.
[2] [2] URMAN K, OTAIGBE J U. New phosphate glass/polymer hybrids—Current status and future prospects[J]. Prog Polym Sci, 2007, 32(12):1462-1498.
[3] [3] WANG Y, LIU X, ZHU C, et al. Production and characterisation of novel phosphate glass fiber yarns, textiles, and textile composites for biomedical applications[J]. J Mech Behavior Biomed Mater, 2019,99(2): 47-55.
[4] [4] JUSTINO DE LIMA C L, VEER F A, ?OPURO?LU O, et al. New phosphate glasses containing industrial waste and their applications for building engineering[J]. Heron, 2018, 63(1-2): 31-55.
[5] [5] SALES B C, BOATNER L A. Lead-iron phosphate glass: A stable storage medium for high-level nuclear waste[J]. Science, 1984,226(4670): 45-48.
[6] [6] BROW R K, KOVACIC L, LOEHMAN R E. Novel glass sealing technologies[J]. Ceram Trans, 1995, 70: 177-187.
[7] [7] JIANG X, LI Z, ZHUANG H, et al. Stable phosphate-based glass for low-temperature sealing applications: Effect of Si3N4 dopant[J].Ceram Int, 2018, 44(16): 20227-20231.
[8] [8] KNOWLES J C. Phosphate based glasses for biomedical applications[J]. J Mater Chem, 2003, 13(10): 2395.
[9] [9] AHMED I, LEWIS M, OLSEN I, et al. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system[J]. Biomaterials, 2004,25(3): 491-499.
[10] [10] HOSSAIN K M Z, HASAN M S, FELFEL R, et al. Development of phosphate-based glass fibers for biomedical applications[G]//Hot Topics in Biomaterials. Unitec House, 2 Albert Place, London N31QB, UK: Future Science Ltd, 2014: 104-115.
[11] [11] WEBER M J. Science and technology of laser glass[J]. J Non-Cryst Solids, 1990, 123(1-3): 208-222.
[12] [12] CAMPBELL J H. Years of laser glass development leading to A 1.8 MJ, 500 TW, laser for fusion ignition[C]//Proceedings of the 18th International Congress on Glass.Westerville, OH: American Ceramic Society, 1998: 1822-1836.
[13] [13] CAMPBELL J H, SURATWALA T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers[J]. J Non-Cryst Solids, 2000,263: 318-341.
[15] [15] HAYASHI A, KOMIYA R, TATSUMISAGO M, et al. Characterization of Li2S-SiS2-Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries[J]. Solid State Ionics, 2002, 152-153: 285-290.
[16] [16] CAURANT D, LOISEAU P, MAJERUS O, et al. Glasses,Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes[M]. Nova Science Publishers, 2008.
[19] [19] SALES B C, BOATNER L A. Lead phosphate glass as a stable medium for the immobilization and disposal of high-level nuclear waste[J]. Mater Lett, 1984, 2(4): 301-304.
[20] [20] LEMESLE T, MéAR F O, CAMPAYO L, et al. Immobilization of radioactive iodine in silver aluminophosphate glasses[J]. J Hazard Mater, 2014, 264: 117-126.
[24] [24] ALDER B J, WAINWRIGHT T E. Molecular Dynamics by Electronic Computers[C]//Transport Processes in Statistical Mechanics. New York, 1958: 97-131.
[25] [25] TISCHENDORF B C, ALAM T M, CYGAN R T, et al. The structure and properties of binary zinc phosphate glasses studied by molecular dynamics simulations[J]. J Non-Cryst Solids, 2003, 316(2-3):261-272.
[26] [26] LIANG J J, CYGAN R T, ALAM T M. Molecular dynamics simulation of the structure and properties of lithium phosphate glasses[J]. J Non-Cryst Solids, 2000, 263/264: 167-179.
[27] [27] DU J, KOKOU L, RYGEL J L, et al. Structure of cerium phosphate glasses: Molecular dynamics simulation[J]. J Am Ceram Soc, 2011,94(8): 2393-2401.
[28] [28] DU J, CORMACK A N. The structure of erbium doped sodium silicate glasses[J]. J Non-Cryst Solids, 2005, 351(27-29): 2263-2276.
[29] [29] MARTIN S W. Review of the structures of phosphate glasses[J]. Eur J Solid State Inorg Chem, 1991, 28(1): 163-205.
[30] [30] BROW R K. Review: the structure of simple phosphate glasses[J]. J Non-Cryst Solids, 2000, s 263-264(1): 1-28.
[32] [32] CHATTERJEE A, GHOSH A. Correlation between ion transport and network structure of Li2O-P2O5 glasses[J]. Solid State Ionics, 2018,314: 1-8.
[33] [33] AL-ZAIBANI M, SHAHBOUB A, RAMADAN R M, et al. Structure and physical properties of Li2O-Fe2O3-P2O5 glasses[J]. Phys Scripta,2021, 96(12): 125701.
[34] [34] DU Y, YUAN Y, LI L, et al. Insights into structure and properties of P2O5-based binary systems through molecular dynamics simulations[J]. J Molecular Liquids, 2021, 339: 116818.
[35] [35] TAKADA K, TAMURA T, MAEDA H, et al. Diffusion of protons and sodium ions in silicophosphate glasses: Insight based on first-principles molecular dynamic simulations[J]. Phys Chem Chem Phys, 2021, 23(27): 14580-14586.
[36] [36] HOPPE U, BROW R K, HANNON A C, et al. Structure of tin phosphate glasses by neutron and X-ray diffraction[J]. J Non-Cryst Solids: X, 2019(2): 100017.
[37] [37] JIMéNEZ J A, FACHINI E R, ZHAO C. XPS and 31P NMR inquiry of Eu3+ -induced structural modification in SnO-containing phosphate glass[J]. J Molecular Struct, 2018, 1164: 470-474.
[38] [38] MU?OZ F, ROCHERULLé J, AHMED I, et al. Phosphate Glasses[G]//Springer Handbooks. Springer, 2019: 553-594.
[41] [41] SHI Q, KANG J, QU Y, et al. Effect of rare-earth oxides on structure and chemical resistance of calcium aluminophosphate glasses[J]. J Non-Cryst Solids, 2018, 491: 71-78.
[42] [42] TUHEEN M I, DU J. Structural features and rare earth ion clustering behavior in lanthanum phosphate and aluminophosphate glasses from molecular dynamics simulations[J]. J Non-Cryst Solids, 2022, 578:121330.
[43] [43] MARTIN R A, SALMON P S, FISCHER H E, et al. Structure of rare-earth phosphate glasses by neutron diffraction[J]. J Non-Cryst Solids, 2004, 345-346: 208-212.
[44] [44] SHI F, HU L, CUI Y, et al. Revealing the structures in short-and middle-order of lanthanum-doped Al2O3-NaPO3 glasses by solid state NMR spectroscopy[J]. J Phys Chem C, 2021, 125: 2097-2110.
[45] [45] ZHANG L, ECKERT H. Short- and medium-range order in sodium aluminophosphate glasses: New insights from high-resolution dipolar solid-state NMR spectroscopy[J]. J Phys chem B, 2006, 110(18):8946-8958.
[46] [46] HELSCH G, HOYER L P, UNTHER G, et al. Sol-gel synthesis of Na2O-Al2O3-P2O5 glasses and their characterization by NMR, SNMS,and AFM[J]. J Sol-Gel Sci Technol, 2005, 33(3): 341-345.
[47] [47] VAN WüLLEN L, ECKERT H, SCHWERING G.Structure?property correlations in lithium phosphate glasses: New insights from 31P ? 7Li double-resonance NMR[J]. Chem Mater,2000, 12(7): 1840-1846.
[48] [48] ALAM T M, LIANG J J, CYGAN R T. Molecular dynamics simulations of the lithium coordination environment in phosphate glasses[J]. Phys Chem Chem Phys, 2000, 2(19): 4427-4432.
[49] [49] GALLEANI G, SANTAGNELI S H, LEDEMI Y, et al. Ultraviolet upconversion luminescence in a highly transparent triply-Doped Gd3+-Tm3+-Yb3+ fluoride-phosphate glasses[J]. J Phys Chem C,2018, 122(4): 2275-2284.
[50] [50] ZHAO T, ZHANG X, REN J. Structural study of rare earth doped fluoride phosphate glasses by solid-state nuclear magnetic resonance[J]. J Non-Cryst Solids, 2020, 544: 120280.
[51] [51] WEN S, WANG Y, LAN B, et al. Pressureless crystallization of glass for transparent nanoceramics[J]. Adv Sci, 2019, 6(17):1901096.
[52] [52] RAY C S, DAY D E. Determining the nucleation rate curve for lithium disilicate glass by differential thermal analysis[J]. J Am Ceram Soc, 1990, 73(2): 439-442.
[53] [53] YINNON H, UHLMANN D R. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory[J]. J Non-Cryst Solids, 1983, 54(3): 253-275.
[54] [54] ROCHERULLé J, CAI M, BéNARD-ROCHERULLé P, et al.Specific trends in phosphate glass crystallization[J]. J Non-Cryst Solids, 2021, 551(1): 120431.
[55] [55] HIROSE K, HONMA T, DOI Y, et al. M?ssbauer analysis of Fe ion state in lithium iron phosphate glasses and their glass-ceramics with olivine-type LiFePO4 crystals[J]. Solid State Commun, 2008,146(5/6): 273-277.
[56] [56] GORZKOWSKA I, JOZWIAK P, GARBARCZYK J E, et al. Studies on glass transition of lithium-iron phosphate glasses[J]. J Thermal Anal Calorim, 2008, 93(3): 759-762.
[57] [57] LI X, XIAO Z, HE Y, et al. Crystallization behavior, structure and properties of glasses in SrO - Fe2O3 - P2O5 system[J]. J Non-Cryst Solids, 2019, 523: 119588.
[58] [58] LI X, YANG H, SONG X, et al. Glass forming region , structure and properties of zinc iron phosphate glasses[J]. J Non-Cryst Solids, 2013,379: 208-213.
[59] [59] XIANFENG M, QITU Z, CHUNHUA L, et al. Preparation and thermal stability of phosphate system protection glasses doped with rare earths[J]. J Rare Earths, 2006, 24(1): 211-214.
[60] [60] LI H, YI J, QIN Z, et al. Structures, thermal expansion, chemical stability and crystallization behavior of phosphate-based glasses by influence of rare earth[J]. J Non-Cryst Solids, 2019, 522(15):119602.
[61] [61] FREIMAN S W, HENCH L L. Advances in nucleation and crystallization in glasses: symposium, April 26-28, 1971[M].American Ceramic Society, 1971.
[62] [62] MCMILLAN P W. Glass-ceramics[M]. London: Academic Press,1979.
[63] [63] ITON K, NAKAYAMA S. Immobilization of cesium by crystalline zirconium phosphate[J]. J Mater Sci, 2002, 37(8):1701-1704.
[65] [65] JAMES P F, IQBAL Y, JAIS U S, et al. Crystallisation of silicate and phosphate glasses[J]. J Non-Cryst Solids, 1997, 219(1): 17-29.
[66] [66] NOMMEOTS-NOMM A, HOUAOUI A, PRADEEPAN PACKIYANATHAR A, et al. Phosphate/oxyfluorophosphate glass crystallization and its impact on dissolution and cytotoxicity[J]. Mater Sci Eng: C, 2020, 117: 111269.
[67] [67] POLUEKTOV P P, SCHMIDT O V, KASCHEEV V A, et al. Modelling aqueous corrosion of nuclear waste phosphate glass[J]. J Nucl Mater, 2017, 484: 357-366.
[68] [68] BUNKER B C, ARNOLD G W, WILDER J A. Phosphate glass dissolution in aqueous solutions[J]. J Non-Cryst Solids, 1984, 64(3):291-316.
[69] [69] REIS F E U, SANTOS K P, TORRICO B C, et al. Filtered smith predictor applied to a boost converter for minimizing the effect of non-minimal phase and rejection of disturbances[C]//Brazilian Power Electronics Conference. 2017: 1-6.
[70] [70] SUN Y, XIA X, QIAO Y, et al. Immobilization of simulated radioactive fluoride waste in phosphate glass[J]. Sci Chin Mater,2016, 59(4): 279-286.
[71] [71] AL-HASNI B, MOUNTJOY G. Structural investigation of iron phosphate glasses using molecular dynamics simulation[J]. J Non-Cryst Solids, 2011, 357(15): 2775-2779.
[72] [72] RAY C, FANG X, KARABULUT M, et al. Effect of melting temperature and time on iron valence and crystallization of iron phosphate glasses[J]. J Non-Cryst Solids, 1999, 249(1): 1-16.
[73] [73] KUMAR B, LIN S. Redox state of iron and its related effects in the CaO-P2O5-Fe2O3 glasses[J]. J Am Ceram Soc, 1991, 74(1): 226-228.
[74] [74] GAO L-W, XIA X-B, XU X-Q, et al. Immobilization of radioactive fluoride waste in aluminophosphate glass: a molecular dynamics simulation[J]. Nucl Sci Tech, 2018, 29(7): 92.
[76] [76] STOCH P, GOJ P, WAJDA A, et al. Alternative insight into aluminium-phosphate glass network from ab initio molecular dynamics simulations[J]. Ceram Int, 2021, 47(2): 1891-1902.
[77] [77] RAJARAM M, DAY D E. Preparation and properties of oxynitride glasses made from 27R2O·20BaO·3Al2O3·50P2O5 glass[J]. J Non-Cryst Solids, 1988, 102(1-3): 173-180.
[78] [78] LE SAUZE A, MONTAGNE L, PALAVIT G, et al. X-ray photoelectron spectroscopy and nuclear magnetic resonance structural study of phosphorus oxynitride glasses, ‘LiNaPON’[J]. J Non-Cryst Solids, 2000, 263-264(1): 139-145.
[79] [79] MU?OZ F, PASCUAL L, DURáN A, et al. Alkali and alkali-lead oxynitride phosphate glasses: a comparative structural study by NMR and XPS[J]. Comptes Rendus Chim, 2002, 5(11): 731-738.
[80] [80] REIDMEYER M R, DAY D E. Phosphorus oxynitride glasses[J]. J Non-Cryst Solids, 1995, 181(3): 201-214.
[81] [81] MARPLE M A T, WYNN T A, CHENG D, et al. Local structure of glassy lithium phosphorus oxynitride thin films: A combined experimental and Ab initio approach[J]. Angew Chem Int Ed, 2020,59(49): 22185-22193.
[82] [82] ZHAO J, NIENHUIS E T, MCCLOY J S, et al. Structures of fluoride containing aluminosilicate low activity nuclear waste glasses: A molecular dynamics simulations study[J]. J Non-Cryst Solids, 2020,550: 120379.
[83] [83] GOJ P, STOCH P. Influence of CaO on structural features of polyphosphate P2O5-Fe2O3-FeO glasses by molecular dynamics simulations[J]. J Non-Cryst Solids, 2020, 537: 120014.
[84] [84] CHRISTIE J K, AINSWORTH R I, HERNANDEZ S E R, et al.Structures and properties of phosphate-based bioactive glasses from computer simulation: a review[J]. J Mater Chem B, 2017, 5(27):5297-5306.
[85] [85] CHRISTIE J K, AINSWORTH R I, DI TOMMASO D, et al. Nanoscale chains control the solubility of phosphate glasses for biomedical applications[J]. J Phys Chem B, 2013, 117(36):10652-10657.
[86] [86] DA N, KROLIKOWSKI S, NIELSEN K H, et al. Viscosity and softening behavior of alkali zinc sulfophosphate glasses[J]. J Am Ceram Soc, 2010, 93(8): 2171-2174.
[87] [87] SIROTKIN S, MESZAROS R, WONDRACZEK L. Chemical stability of ZnO-Na2O-SO3-P2O5 glasses[J]. Int J Appl Glass Sci,2012, 3(1): 44-52.
[88] [88] DA N, GRASSMé O, NIELSEN K H, et al. Formation and structure of ionic (Na, Zn) sulfophosphate glasses[J]. J Non-cryst Solids, 2011,357(10): 2202-2206.
[89] [89] SENGUPTA P. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix - Present status and future challenges[J]. J Hazard Mater, 2012, 235-236: 17-28.
[90] [90] KAUSHIK C P, MISHRA R K, SENGUPTA P, et al. Barium borosilicate glass - a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste[J]. J Nucl Mater, 2006,358(2-3): 129-138.
[91] [91] FRANKEL G S, VIENNA J D, LIAN J, et al. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals[J]. Npj Maters Degrad, 2018, 2(1): 15.
[92] [92] MA L, BROW R K, SCHLESINGER M E. Dissolution behavior of Na2O-FeO-Fe2O3-P2O5 glasses[J]. J Non-Cryst Solids, 2017, 463(1):90-101.
[93] [93] DAY D E, WU Z, RAY C S, et al. Chemically durable iron phosphate glass wasteforms[J]. J Non-Cryst Solids, 1998, 241(1): 1-12.
[94] [94] MESKO M G, DAY D E, BUNKER B C. Immobilization of CsCl and SrF2 in iron phosphate glass[J]. Waste Manag, 2000, 20(4):271-278.
[95] [95] BACHVAROVA-NEDELCHEVA A, IORDANOVA R, GANEV S, et al. Glass formation and structural studies of glasses in the TeO2-ZnO-Bi2O3-Nb2O5 system[J]. J Non-Cryst Solids, 2018,503-504: 224-231.
[96] [96] OUESLATI-OMRANI R, HICHEM A, CHTOUROU R, et al.Structural , thermal and optical properties of phosphate glasses doped with SiO2[J]. J Non-Cryst Solids, 2018, 481: 10-16.
[97] [97] CHABAUTY A-L, MéAR F O, MONTAGNE L, et al. Chemical durability evaluation of silver phosphate-based glasses designed for the conditioning of radioactive iodine[J]. J Nucl Mater, 2021, 550(8):152919.
[98] [98] LIU S, MING H, CUI J, et al. Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors[J]. J Phys Chem C, 2018,122(28): 16289-16303.
[99] [99] MING H, LIU S, LIU L, et al. Highly Regular, Uniform K3ScF6:Mn4+ phosphors: Facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19783-19795.
[100] [100] QIAO J, NING L, MOLOKEEV M S, et al. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7: Eu phosphor[J]. Angew Chem Int Ed, 2019, 58(33): 11645-11650.
[101] [101] MACKEVIC I, GRIGORJEVAITE J, JANULEVICIUS M, et al. Synthesis and optical properties of highly efficient red-emitting K2LaNb5O15: Eu3+ phosphors[J]. Opt Mater, 2019, 89: 25-33.
[102] [102] EHRT D. REVIEW: Phosphate and fluoride phosphate optical glasses— properties, structure and applications[J]. Phys Chem Glasses: Eur J Glass Sci Technol Part B, 2015, 56(6): 217-234.
[105] [105] KANG S, WANG X, XU W, et al. Effect of B2O3 content on structure and spectroscopic properties of neodymium-doped calcium aluminate glasses[J]. Opt Mater, 2017, 66: 287-292.
[106] [106] ZHANG L Y, LI H, HU L L. Statistical structure analysis of GeO2 modified Yb3+ : Phosphate glasses based on Raman and FTIR study[J]. J Alloys Compd, 2017, 698: 103-113.
[107] [107] HE D, YU C, CHENG J, et al. Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass[J]. J Alloys Compd, 2011, 509(5):1906-1909.
[108] [108] WU Z, WU H, TANG L, et al. Fluorescence and energy transfer between Eu3+ and Sm3+ in single doped and co-doped borate glass[J]. J Non-Cryst Solids, 2017, 463: 169-174.
[109] [109] YUKIO N, MASATSUGU I, DAISUKE S, et al. White light emitting diodes with super-high luminous efficacy[J]. J Phys D: Appl Phys,2010, 43(35): 354002.
[110] [110] FAN S, YU C, HE D, et al. Tunable white light emission from γ-irradiated Ag/Eu co-doped phosphate glass phosphor[J]. Opt Mater Express, 2012, 2(6): 765.
[111] [111] CALDI?O U, LIRA A, MEZA-ROCHA A N, et al. Development of sodium-zinc phosphate glasses doped with Dy3+, Eu3+ and Dy3+/Eu3+ for yellow laser medium, reddish-orange and white phosphor applications[J]. J Lumin, 2014, 194: 231-239.
[112] [112] MAITY A, JAIVA S, Excitation dependent tunable emission colour of Eu3+-Tb3+ co-doped titanium zinc sodium phosphate glass[J].Physica B: Phys Condensed Matter, 2021, 619: 413186.
[113] [113] CALDI?O U, LIRA A, MEZA-ROCHA A N, et al. Development of sodium-zinc phosphate glasses doped with Dy3+, Eu3+ and Dy3+/Eu3+ for yellow laser medium, reddish-orange and white phosphor applications[J]. J Lumin, 2018, 194: 231-239.
[114] [114] MIROSLAV D D. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review[J]. Methods Appl Fluor, 2016, 4: 042001.
[115] [115] CHEN Y, LIU X, CHEN G, et al. Up-conversion luminescence and temperature sensing characteristics of Er3+/Yb3+ co-doped phosphate glasses[J]. J Mater Sci: Mater Electron, 2017, 28: 15657-15662.
[116] [116] CHEN Y, CHEN G, LIU X, et al. Down-cnversion luminescence and optical thermometric performance of Tb3+/Eu3+ doped phosphate glass[J]. J Non-Cryst Solids, 2018, 484: 111-117.
[117] [117] CHEN Y, CHEN G, LIU X, et al. Upconversion luminescence,optical thermometric properties and energy transfer in Yb3+/Tm3+ co-doped phosphate glass[J]. Opt Mater, 2018, 81: 78-83
[118] [118] FARIA W J, GON?ALVES T S, CAMARGO A S S. Near infrared optical thermometry in fluorophosphate glasses doped with Nd3+/Yb3+[J]. J Alloys Compd, 2021, 883: 160849.
[119] [119] TORQUATO A, OLIVEIRA R A, SALES T O, et al. Influence of PbF2 content on optical thermometry of Er3+/Yb3+ co-doped tungsten sodium phosphate glasses[J]. Opt Mater, 2021, 112:110723.
[120] [120] MORSHIDY H Y, SADEQ M S. Influence of cobalt ions on the structure, phonon emission, phonon absorption and ligand field of some sodium borate glasses[J]. J Non-Cryst Solids, 2019, 525:119666.
[121] [121] EL-DALY A A, ABDO M A, BAKR H A, et al. Impact of cobalt ions on the phonon energy and ligand field parameters of some borate glasses[J]. J Non-Cryst Solids, 2021, 555: 120535.
[122] [122] SADEQ M S, MORSHIDY H Y. Effect of samarium oxide on structural, optical and electrical properties of some alumino-borate glasses with constant copper chloride[J]. J Rare Earths, 2020, 38(7):770-775.
[123] [123] ABDELGHANY A M, EL-DAMRAWI G, ORABY A H, et al.Optical and FTIR structural studies on CoO-doped strontium phosphate glasses[J]. J Non-Cryst Solids, 2018, 499: 153-158.
[124] [124] IBRAHIM A, SADEQ M S. Influence of cobalt oxide on the structure, optical transitions and ligand field parameters of lithium phosphate glasses[J]. Ceram Int, 2021, 47(20): 28536-28542.
[125] [125] PUGLIESE D, GOBBER F S, FORNO I, et al. Design and manufacturing of a Nd-doped phosphate glass-based jewel[J].Materials, 2020, 13(10): 2321.
[126] [126] SENESCHAL K, SMEKTALA F, BUREAU B, et al. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers[J]. Mater Res Bull, 2005, 40(9): 1433-1442.
[127] [127] ZERVAS M N, CODEMARD A C. High power fiber lasers:A review[J]. IEEE J Select Topics Quantum Electron, 2014, 20(5):219-241.
[128] [128] PASK H M, CARMAN R J, HANNA D C, et al.Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region[J].IEEE J Select Topics Quantum Electron, 1995, 1(1): 2-13.
[129] [129] BOETTI N, PUGLIESE D, CECI-GINISTRELLI E, et al. Highly doped phosphate glass fibers for compact lasers and amplifiers: A review[J]. Appl Sci, 2017, 7(12): 1295.
[130] [130] TIAN S, LUN Y, SUN Y, et al. Silicate-clad Dy3+ doped multi-component phosphate glass core glass fiber for yellow laser applications[J]. J Non-Cryst Solids, 2022, 577(1): 121313.
[131] [131] LEE YIN-WEN, BYER R. Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres[J]. ElectronLett,2008, 41(2): 40-41.
[132] [132] JIANG S. Erbium-doped phosphate fiber amplifiers[J]. Proc SPIE -The Int Soc Opt Eng, 2003, 5246: 201-207.
[133] [133] ZHU X, SHI W, ZONG J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J]. Opt Lett, 2012, 37(20): 4167.
[134] [134] SHI W, PETERSEN E B, LEIGH M, et al. High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band[J]. Op Express, 2009, 17(10): 8237.
[135] [135] ZAKI R M, STRUTYNSKI C, KASER S, et al. Direct 3D-printing of phosphate glass by fused deposition modeling[J]. Mater Design, 2020,194: 108957
[136] [136] DU Y, YAN S, LI Z, et al. Spectral properties of inorganic CsPbBr3 quantum dots embedded in phosphate fibers[J]. J Alloys Compd,2021, 882: 160714
[137] [137] YOUNESS R A, TAHA M A, IBRAHIM M, et al. FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses[J]. Silicon, 2018,10(3): 1151-1159.
[138] [138] SYCH O, GüNDüZ O, PINCHUK N, et al. Tissue engineering scaffolds from La2O3-hydroxyapatite\boron glass composites[J]. J Austr Ceram Soc, 2016, 52(2): 103-110.
[139] [139] WERS E, BUNETEL L, OVDADESSE H, et al. Effect of copper and zinc on the bioactivity and cells viability of bioactive glasses[J].Bioceram Develop Appl, 2013, 3(s1): 1-3.
[140] [140] AVENT A G, CARPENTER C N, DAVID SMITH J, et al. The dissolution of silver-sodium-calcium-phosphate glasses for the control of urinary tract infections[J]. J Non-Cryst Solids, 2003,328(1-3): 31-39.
[141] [141] YANG F, YANG W. Brittle versus ductile transition of nanocrystalline metals[J]. In J Solids Struct, 2008, 45(13): 3897-3907.
[142] [142] KAWASHITA M, TSUNEYAMA S, MIYAJI F, et al. Antibacterial silver-containing silica glass prepared by sol-gel method[J].Biomaterials, 2000, 21(4): 393-398.
[143] [143] SAUDI H A, ABD-ALLAH W M, SHAABAN K S. Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste[J].J Mater Sci: Mater Electron, 2020, 31(9): 6963-6976.
[144] [144] ZAID F, EL-DAMRAWI G, MEIKHAIL M S, et al. Improving structure and properties of lead phosphate glass through precipitation of few crystals from CeO2[J]. Egypt J Chem, 2021, 64(7):3927-3933.
[145] [145] EDDINE O J, WAKRIM H, EL BOUCHTI M, et al. Effect of the chemical composition on the structural and mechanical properties of phosphate glass fibers based on natural phosphate[J]. J Alloys Compd,2020, 817: 152808.
[146] [146] TAN C, AHMED I, PARSONS A J, et al. Effects of Fe2O3 addition and annealing on the mechanical and dissolution properties of MgO-and CaO-containing phosphate glass fibres for bio-applications[J].Biomed Glass, 2018, 4(1): 57-71.
[147] [147] CHEN Y, WANG S, CHEN Z, et al. Synthesis of Co3O4 nanoparticles with controllable size and their catalytic properity[J].Solid State Sci, 2018, 82: 78-83.
[148] [148] PAVI? L, ?ANTI? A, NIKOLI? J, et al. Nature of mixed electrical transport in Ag2O-ZnO-P2O5 glasses containing WO3 and MoO3[J]. Electrochim Acta, 2018, 276: 434-445.
[149] [149] MAAROUFI A, OABI O, LUCAS B, et al. New composites of ZnO-P2O5/Ni having PTC transition and high seebeck coefficient[J].J Non-Cryst Solids, 2012, 358(23): 3312-3317.
[150] [150] OABI O, MAAROUFI A, LUCAS B, et al. Positive temperature coefficient and high seebeck coefficient in ZnO-P2O5/Co composites[J].J Non-Cryst Solids, 2014, 385: 89-94.
[151] [151] MOTT N F. Conduction in glasses containing transition metal ions[J].J Non-Cryst Solids, 1968, 1(1): 1-17.
[152] [152] MUGONI C, MONTORSI M, SILIGARDI C, et al. Electrical conductivity of copper lithium phosphate glasses[J]. J Non-Cryst Solids, 2014, 383: 137-140.
[153] [153] SMITH W, FORESTER T R, GREAVES G N, et al. Molecular dynamics simulation of alkali-metal diffusion in alkali-metal disilicate glasses[J]. J Mater Chem, 1997, 7(2): 331-336.
[154] [154] KARTHIKEYAN A, VINATIER P, LEVASSEUR A, et al. The molecular dynamics study of lithium ion conduction in phosphate glasses and the role of non-bridging oxygen[J]. J Phys Chem B, 1999,103(30): 6185-6192.
[155] [155] ZAGHIB K, STRIEBEL K, GUERFI A, et al. LiFePO4/polymer/natural graphite: low cost Li-ion batteries[J]. Electrochim Acta, 2004,50(2/3): 263-270.
[156] [156] HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochem Solid-State Lett, 2001, 4(10): 4-7.
[157] [157] DELACOURT C, RODRíGUEZ-CARVAJAL J, SCHMITT B, et al.Crystal chemistry of the olivine-type LixFePO4 system (0 ≤x≤1) between 25 and 370 ℃[J]. Solid State Sci, 2005, 7(12): 1506-1516.
[158] [158] CACCIOTTI I, VALENTINI M, RAIO M, et al. Design and development of advanced BaTiO3/MWCNTs/PVDF multi-layered systems for microwave applications[J]. Compos Struct, 2019, 224:111075.
[159] [159] ZHANG X, WU K, LIU Y, et al. Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites[J]. Compos Sci Technol, 2019, 175: 135-142.
[160] [160] CHEN Z, DAHN J R. Reducing Carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J]. J Electrochem Soc, 2002, 149(9): A1184.
[161] [161] CHUNG S-Y, BLOKING J T, CHIANG Y-M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat Mater, 2002, 1(2): 123-128.
[162] [162] YIM Y J, PARK S J. Effect of silver-plated expanded graphite addition on thermal and electrical conductivities of epoxy composites in the presence of graphite and copper[J]. Compos Part A: Appl Sci Manuf, 2019, 123: 253-259.
[163] [163] CACCIOTTI I, VALENTINI M, NANNI F. Ternary systems based on PVDF, BaTiO3 and MWCNTs: Fabrication, characterization, electromagnetic simulation[C]//Aip Conference. AIP Publishing LLC,2015.
[164] [164] RADOUANE N, MAAROUFI A, OUAKI B, et al. Thermal,electrical and structural characterization of zinc phosphate glass matrix loaded with different volume fractions of the graphite particles[J]. J Non-Cryst Solids, 2020, 536: 119989.
[165] [165] RADOUANE N, DEPRIESTER M, SAHRAOUI A H, et al. Thermoelectric improvement of the figure of merit of zinc phosphate glass composites by a likely tunnel percolation mechanism[J]. J Appl Phys, 2021, 129(15): 155110.
[166] [166] MAMUNYA Y P, DAVYDENKO V V, PISSIS P, et al. Electrical and thermal conductivity of polymers filled[J]. Eur Polym J, 2002, 38:1887-1897.
[167] [167] RAY H L, DE JONGHE L, WANG R. Rare earth phosphate glass and glass-ceramic proton conductors[J]. ECS Trans, 2019, 16(51):389-393.
[168] [168] BISWAS D, NINGTHEMCHA R, SINGH L S, et al. Effect of AgI doping on electrical conductivity and dielectric relaxation in silver phosphate glass nanocomposite systems[J]. Physica B: Condensed Matter, 2021, 602: 412486.
[169] [169] RENKA S, KLASER T, BURAZER S, et al. High electronically conductive tungsten phosphate glass-ceramics[J]. Nanomaterials,2020, 10(12): 2515.
[170] [170] MAAROUFI A, OABI O, PINTO G, et al. Electrical conductivity of new zinc phosphate glass/metal composites[J]. J Non-Cryst Solids,2012, 358(20): 2764-2770.
[171] [171] JIMéNEZ J A, LYSENKO S, ZHANG G, et al. Optical characterization of ag nanoparticles embedded in aluminophosphate glass[J]. J Electron Mater, 2007, 36(7): 812-820.
[172] [172] RAO G V, SHASHIKALA H D. Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass[J]. J Non-Cryst Solids, 2014, 402: 204-209.
[173] [173] CHOUDHURY A. Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity[J]. Sensors Actuators B:Chem, 2009, 138(1): 318-325.
[174] [174] BAHNIWAL S, SHARMA A, AGGARWAL S, et al. Dielectric spectroscopy of silver nanoparticle embedded soda glass[J]. J Appl Phys, 2008, 104(6): 064318.
[175] [175] MOGU?-MILANKOVI? A, SKLEPI? K, SKOKO ?, et al. Influence of nanocrystallization on the electronic conductivity of zinc iron phosphate glass[J]. J Am Ceram Soc, 2012, 95(1): 303-311.
[176] [176] HAMMI M, ZIAT Y, CHARAF L. Positive temperature coefficient in lead phosphate glass-based composites with charges-hopping[J].Mater Chem Phys, 2022, 276:125370.
[177] [177] BROGLIA G, MUGONI C, DU J, et al. Lithium vanado-phosphate glasses: Structure and dynamics properties studied by molecular dynamics simulations[J]. J Non-Cryst Solids, 2014, 403: 53-61.
[178] [178] KIM N-J, IM S-H, KIM D-H, et al. Structure and properties of borophosphate glasses[J]. Electron Mater Lett, 2010, 6(3): 103-106.
[180] [180] WEBER M J. Glass for neodymium fusion lasers[J]. J Non-Cryst Solids, 1980, 42(1-3): 189-196.
[181] [181] FUJIMOTO Y, SATO T, OKADA H, et al. Development of Nd-doped optical gain material based on silica glass with a high thermal shock parameter for high- average-power laser[C]. Opt InfoBase Conference Papers, 2005: 933-935.
[182] [182] LOFAJ F, SATET R, HOFFMANN M J, et al. Thermal expansion and glass transition temperature of the rare-earth doped oxynitride glasses[J]. J Eur Ceram Soc, 2004, 24(12): 3377-3385.
[183] [183] LI W, HE D, LI S, et al. Optical and thermal properties of a new Nd-doped phosphate laser glass[C]//SHAO J, JITSUNO T,RUDOLPH W. Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers. 2013, 8786: 878629.
[184] [184] LI Y, YANG J, XU S, et al. Physical and thermal properties of P2O5-Al2O3-BaO- La2O3 glasses[J]. J Mater Sci Technol, 2005, 21(3):391-394.
[185] [185] HAYDEN J S, HAYDEN Y T, CAMPBELL J H. Effect of composition on the thermal, mechanical, and optical properties of phosphate laser glasses[C]//IRELAND C L M. High-Power Solid State Lasers and Applications. 1990, 1277: 121.
[186] [186] LI W, HE D, LI S, et al. Investigation on thermal properties of a new Nd-doped phosphate glass[J]. Ceram Int, 2014, 40(8): 13389-13393.
[187] [187] SHELBY J E, KOHL J T. Rare-Earth Aluminosilicate glasses[J]. J Am Ceram Soc, 1990, 73(1): 39-42.
[188] [188] JOSEPH K, ASUVATHRAMAN R, VENKATA KRISHNAN R,et al. Investigation of thermal expansion and specific heat of cesium loaded iron phosphate glasses[J]. J Nucl Mater, 2012, 429(1-3): 1-6.
[189] [189] WANG J, BROCKLESBY W S, LINCOLN J R, et al. Local structures of rare-earth ions in glasses: the ‘crystal-chemistry’ approach[J]. J Non-Cryst Solids, 1993, 163(3): 261-267.
Get Citation
Copy Citation Text
YAN Jingping, DENG Lu, HU Lili. Research Progresses on Structures and Properties of Phosphate Glasses[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1006
Category:
Received: Nov. 30, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: Jingping YAN (jpyan@siom.ac.cn)