Journal of Inorganic Materials, Volume. 39, Issue 10, 1159(2024)
[1] ZHU T J, LIU Y T, FU C G et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Advanced Materials, 29(2017).
[2] WANG H, LALONDE A D, PEI Y Z et al. The criteria for beneficial disorder in thermoelectric solid solutions[J]. Advanced Functional Materials, 23(2013).
[3] HONG M, CHEN Z G, YANG L et al. Realizing ZT of 2.3 in Ge1-
[4] ZHOU Y M, ZHAO L D. Promising thermoelectric bulk materials with 2D structures[J]. Advanced Materials, 29(2017).
[5] SU H J, MIAO Z C, PENG Y et al. SnTe thermoelectric materials with low lattice thermal conductivity synthesized by a self- propagating method under a high-gravity field[J]. Physical Chemistry Chemical Physics, 24(2022).
[6] ZHAO L D, HAO S Q, LO S H et al. High thermoelectric performance
[7] BANIK A, VISHAL B, PERUMAL S et al. The origin of low thermal conductivity in Sn1-
[8] SHI X, YANG J, SALVADOR J R et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of American Chemistry Society, 133(2011).
[9] LIU H L, SHI X, ZHANG L L et al. Copper ion liquid-like thermoelectrics[J]. Nature Materials, 11(2012).
[10] LIU R H, CHEN H Y, ZHAO K P et al. Entropy as a gene-like performance indicator promoting thermoelectric materials[J]. Advanced Materials, 29(2017).
[11] CHEN Z W, JIAN Z Z, LI W et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence[J]. Advanced Materials, 29(2017).
[12] PEI Y Z, GIBBS Z M, GLOSKOVSKII A et al. Optimum carrier concentration in n-type PbTe thermoelectrics[J]. Advanced Energy Materials, 4(2014).
[13] LI W, ZHENG L L, GE B H et al. Promoting SnTe as an eco- friendly solution for p-PbTe thermoelectric
[14] TANG J, YAO Z, CHEN Z et al. Maximization of transporting bands for high-performance SnTe alloy thermoelectrics[J]. Materials Today Physics, 9, 100091(2019).
[15] JIANG Q H, HU H S, YANG J Y et al. High thermoelectric performance in SnTe nanocomposites with all-scale hierarchical structures[J]. ACS Applied Materials & Interfaces, 12(2020).
[16] WU H J, CHANG C, FENG D et al. Synergistically optimized electrical and thermal transport properties of SnTe
[17] TAN X J, SHAO H Z, HE J et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg)[J]. Physical Chemistry Chemical Physics, 18(2016).
[18] TAN G J, SHI F Y, DOAK J W et al. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe[J]. Energy & Environmental Science, 8(2015).
[19] TAN G J, SHI F Y, HAO S Q et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence[J]. Journal of American Chemistry Society, 137(2015).
[20] PEI Y Z, ZHENG L L, LI W et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe[J]. Advanced Electronic Materials, 2(2016).
[21] ZHAO L D, ZHANG X, WU H J et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe[J]. Journal of American Chemistry Society, 138(2016).
[22] WEI P X, LIAO C E, WU H A et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance[J]. Advanced Materials, 32(2020).
[23] SHAFEIE S, GUO S, HU Q et al. High-entropy alloys as high-temperature thermoelectric materials[J]. Journal of Applied Physics, 118(2015).
[24] HU L, ZHANG Y, WU H et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance[J]. Advanced Energy Materials, 8, 1802116(2018).
[25] PEI Y Z, LALONDE A D, WANG H et al. Low effective mass leading to high thermoelectric performance[J]. Energy & Environmental Science, 5(2012).
[26] BLACHNIK R, IGEL R. Thermodynamic properties of IV-VI compounds lead chalcogenides[J]. Zeitschrift Fur Naturforschung B, 29(1974).
[27] ZHANG Q, GUO Z, WANG R Y et al. High-performance thermoelectric material and module driven by medium-entropy engineering in SnTe[J]. Advanced Functional Materials, 32(2022).
[28] SU H J, HAN Y M, XIE L C et al. Fast fabrication of SnTe
[29] KIM H S, GIBBS Z M, TANG Y et al. Characterization of Lorenz number with Seebeck coefficient measurement[J]. APL Materials, 3(2015).
[30] YANG Q, QIU P, SHI X et al. Application of entropy engineering in thermoelectrics[J]. Journal of Inorganic Materials, 36(2021).
[31] KIM Y M, CHUNG K, YOO J et al. Effect of fine boron powders prepared with a self-propagating high temperature synthesis on flux pinning properties of the MgB2/Fe composite wires[J]. Journal of Alloys and Compounds, 485(2009).
[32] WANG L J, CHANG S Y, ZHENG S Q et al. Thermoelectric performance of Se/Cd codoped SnTe
[33] ROYCHOWDHURY S, BISWAS R K, DUTTA M. Phonon localization and entropy-driven point defects lead to ultralow thermal conductivity and enhanced thermoelectric performance in (SnTe)1-2
Get Citation
Copy Citation Text
Haojian SU, Min ZHOU, Laifeng LI.
Category:
Received: Feb. 2, 2024
Accepted: --
Published Online: Dec. 13, 2024
The Author Email: Min ZHOU (mzhou@mail.ipc.ac.cn)