Journal of Inorganic Materials, Volume. 39, Issue 10, 1159(2024)

Optimization of Thermoelectric Properties of SnTe via Multi-element Doping

Haojian SU1...2, Min ZHOU1,* and Laifeng LI1 |Show fewer author(s)
Author Affiliations
  • 11. Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less

    Thermoelectric materials can realize the direct conversion of heat and electric energy, and have broad application prospects in the fields of thermoelectric power generation and semiconductor refrigeration. Both SnTe and PbTe thermoelectric materials belong to the Ⅳ-Ⅵ group, and have the same NaCl-type crystal structure, but SnTe possesses poor thermoelectric properties. In this work, SnTe-based thermoelectric materials were prepared by a fast method, known as self-propagating high-temperature synthesis under high-gravity field (HG-CS) combined with spark plasma sintering (SPS). The effect and mechanism of multi-element doping on the thermoelectric properties of SnTe compounds were also studied. Multi-element doping, equivalent ions Ge2+ and Pb2+ in cation of SnTe and anionic S2- and Se2-, causes a large number of lattice distortion point defects. At the same time, rapid solidification under the supergravity field brings about plastic deformation and introduces a stress field and a large number of dislocations, which results in the formation of multilevel microstructural defects and strong scattering of medium- and high-frequency phonons. As a result, the room-temperature thermal conductivity decreases dramatically from 7.28 W·m-1·K-1 (undoped SnTe) to 2.74 W·m-1·K-1 (Sn0.70Ge0.15Pb0.15Te0.80Se0.10S0.10), with a minimum thermal conductivity of only 1.38 W·m-1·K-1 at 873 K. These microstructural defects scatter phonons and carriers, leading to a decrease in carrier mobility and conductivity. It is worth mentioning that doping decreases the bandgap of SnTe and increases the Seebeck coefficient, so that the power factor PF of the doped material remains at a high value. Finally, the peak thermoelectric figure of merit ZT of Sn0.70Ge0.15Pb0.15Te0.80Se0.10S0.10 sample is greatly improved to 1.02 (873 K).

    Keywords
    Tools

    Get Citation

    Copy Citation Text

    Haojian SU, Min ZHOU, Laifeng LI. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 2, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: ZHOU Min (mzhou@mail.ipc.ac.cn)

    DOI:10.15541/jim20240062

    Topics