Acta Optica Sinica, Volume. 39, Issue 5, 0512004(2019)

Measurement of Heat Dissipation Rate Based on Optic-Thermo Oscillations in CaF2 Optical Micro-Cavity

Dong Guo1, Changling Zou2, Hongliang Ren1,3、*, Jin Lu1, Yali Qin1, Shuqin Guo1, and Weisheng Hu3
Author Affiliations
  • 1 College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(9)
    Structural diagram of CaF2 WGM micro-resonator and transmission waveforms at different heat dissipation rates. (a) Structural diagram of CaF2 WGM micro-resonator; (b) transmission waveform at γr=0.15 s-1; (c) transmission waveforms under different γr; (d) enlarged diagram of transmission waveform within first oscillation period in (c)
    Equivalent feedback loop of thermo-optic oscillation in micro-resonator
    Oscillation period versus cycle index under different heat dissipation rates
    Measurement model of sensing data based on BP neural network
    Influence of each parameter on BP-ANN measurement results. (a) Number of neurons in hidden layer; (b) training goal error; (c) learning rate; (d) number of training datasets when detected datasets are fixed
    Comparison between measurement results by BP-ANN and actual heat dissipation rate. (a) Group A; (b) enlarged diagram of dotted area in (a); (c) group B; (d) enlarged diagram of dotted area in (c)
    • Table 1. Parameters for CaF2 micro-cavity

      View table

      Table 1. Parameters for CaF2 micro-cavity

      ParameterValue
      Intrinsic Q of resonator (Q0)7×108
      Coupling Q(Qc)8×108
      Resonator diameter (d) /(10-3 m)9
      Kerr coefficient (nkerr) /(m2·W-1)3.2×10-20
      Mode cross area (A) /m22×10-9
      Mode volume (Vm1) /m36.3×10-11
      Resonator volume (Vm2) /m37.85×10-8
      Thermo-optic coefficient (nt1) /K-1-1.14×10-5
      Thermal expansion coefficient (nt2) /K-11.87×10-5
      Heat dissipation rate from optical mode to rest of resonator (γm) /s-12750
      Absorption rate of optical mode (γabs) /(K·J-1)3250×10-4
      Speed of light (c) /(m·s-1)299792458
      Frequency of light (fr) /Hz2.819×1014
      Refractive index (n1)1.43
      Cavity resonant frequency without nonlinear effects (f0) /Hz2.819×1014
    • Table 2. Parameters of BP-ANN

      View table

      Table 2. Parameters of BP-ANN

      ParameterValue
      Number of neurons in input layer18
      Number of neurons in hidden layer15
      Number of neurons in output layer1
      Learning rate4×10-3
      Training goal1×10-9
    • Table 3. Two groups of test datasets

      View table

      Table 3. Two groups of test datasets

      Group indexOriginal value of heat dissipation rate /s-1
      A[0.0649∶0.0010∶0.1639]
      B[0.0648∶0.0040∶0.1638]
    Tools

    Get Citation

    Copy Citation Text

    Dong Guo, Changling Zou, Hongliang Ren, Jin Lu, Yali Qin, Shuqin Guo, Weisheng Hu. Measurement of Heat Dissipation Rate Based on Optic-Thermo Oscillations in CaF2 Optical Micro-Cavity[J]. Acta Optica Sinica, 2019, 39(5): 0512004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Dec. 15, 2018

    Accepted: Jan. 25, 2019

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0512004

    Topics