Journal of Synthetic Crystals, Volume. 53, Issue 12, 2113(2024)
First-Principles Study on the Bonding Strength, Stability and Electronic Structure of La-Doped WC (0001)/Co (111) Interface
[1] [1] MUKHOPADHYAY A, BASU B. Recent developments on WC-based bulk composites[J]. Journal of Materials Science, 2011, 46(3): 571-589.
[2] [2] HUANG C G. Effects of rare earth elements of Y, Ce and their adding ways on microstructure and properties of WC-Co cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(5):701-706.
[3] [3] LIU Y, LI X F, ZHOU J H, et al. Effects of Y2O3 addition on microstructures and mechanical properties of WC-Co functionally graded cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50: 53-58.
[4] [4] ZHANG L, FENG Y P, CHEN S, et al. In situ formation of RE2S3 and RE2O2S phases on sinter skin of Cr-mischmetal co-doped WC-Co alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2): 401-405.
[6] [6] ZHANG L, CHEN S, NAN Q, et al. Effect of La containing phases on microscopic wear characteristics and residual stress of WC-Co cemented carbide[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 7-11.
[7] [7] OU X Q, XIAO D H, SHEN T T, et al. Characterization and preparation of ultra-fine grained WC-Co alloys with minor La-additions[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31(1): 266-273.
[8] [8] JIANG H L, SU F Y, YANG Y T, et al. Coprecipitation of Co and La2O3 coprecipitation on WC for tailoring the grain distribution and boundary of high-performance coarse-grained WC-10Co cemented carbide[J]. International Journal of Refractory Metals and Hard Materials, 2023, 115: 106303.
[9] [9] GTHELID M, HAGLUND S, GREN J. Influence of O and Co on the early stages of sintering of WC-Co: a surface study by AES and STM[J]. Acta Materialia, 2000, 48(17): 4357-4362.
[10] [10] CHRISTENSEN M, WAHNSTRM G. Effects of cobalt intergranular segregation on interface energetics in WC-Co[J]. Acta Materialia, 2004, 52(8): 2199-2207.
[11] [11] YANG A C, DUAN Y H, PENG M J, et al. Revealing the interface characteristic of the semi-coherent Co(111)/WC(0001) interface: a first principles investigation[J]. Philosophical Magazine, 2022, 102(20): 2031-2055.
[12] [12] FAN Y H, WANG W H, HAO Z P. Theoretical calculation and analysis of physical and mechanical properties of WC-Co cemented carbide with lanthanum[J]. Journal of Materials Engineering and Performance, 2024, 33(7): 3582-3591.
[13] [13] HU J B, JIAN X, YANG T R, et al. Investigation on the interface characteristic between WC(001) and diamond(111) by first-principles calculation[J]. Diamond and Related Materials, 2022, 123: 108864.
[14] [14] KURLOV A S, GUSEV A I. Phase equilibria in the W-C system and tungsten carbides[J]. Russian Chemical Reviews, 2006, 75(7): 617-636.
[15] [15] YANG G Y, LIU Y, HANG Z Q, et al. Adhesion at cerium doped metal-ceramic -Fe/WC interface: afirst-principles calculation[J]. Journal of Rare Earths, 2019, 37(7): 773-780.
[16] [16] ZHAO X B, ZHUO Y G, LIU S, et al. Investigation on WC/TiC interface relationship in wear-resistant coating by first-principles[J]. Surface and Coatings Technology, 2016, 305: 200-207.
[19] [19] LI Y F, GAO Y M, XIAO B, et al. Theoretical study on the electronic properties and stabilities of low-index surfaces of WC polymorphs[J]. Computational Materials Science, 2011, 50(3): 939-948.
[20] [20] LI Y F, GAO Y M, XIAO B, et al. Theoretical calculations on the adhesion, stability, electronic structure, and bonding of Fe/WC interface[J]. Applied Surface Science, 2011, 257(13): 5671-5678.
[21] [21] TAKANABE K, NAGAOKA K, NARIAI K, et al. Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure[J]. Journal of Catalysis, 2005, 230(1): 75-85.
[22] [22] BI K, LIU J, DAI Q X. First-principles study of boron, carbon and nitrogen adsorption on WC(100) surface[J]. Applied Surface Science, 2012, 258(10): 4581-4587.
[24] [24] WU Z X, PANG M J, ZHAN Y Z, et al. The bonding characteristics of the Cu(111)/WC(0001) interface: an insight from first-principle calculations[J]. Vacuum, 2021, 191: 110218.
[25] [25] LIU Z W, WANG A Q, LIU P, et al. Investigation on the WC/Cu interfacial bonding properties: first-principles prediction and experimental verification[J]. International Journal of Refractory Metals and Hard Materials, 2022, 106: 105872.
[26] [26] SIEGEL D J, HECTOR L G Jr, ADAMS J B. Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC[J]. Surface Science, 2002, 498(3): 321-336.
[27] [27] ZHANG W, SMITH J R. Nonstoichiometric interfaces and Al2O3 adhesion with Al and Ag[J]. Physical Review Letters, 2000, 85(15): 3225-3228.
[28] [28] LIU W, LI J X, ZHENG W, et al. NiAl(110)/Cr(110) interface: a density functional theory study[J]. Physical Review B, 2006, 73: 205421.
[29] [29] CHEN J, LONG Y. A first-principles study on the helium doped grain boundary in metal Al[J]. The European Physical Journal B, 2012, 85(10): 345.
Get Citation
Copy Citation Text
ZHANG Haoqiang, CAO Xingfei, WU Yuxin, ZHANG Duo, HOU Suoxia. First-Principles Study on the Bonding Strength, Stability and Electronic Structure of La-Doped WC (0001)/Co (111) Interface[J]. Journal of Synthetic Crystals, 2024, 53(12): 2113
Category:
Received: Jun. 6, 2024
Accepted: Jan. 10, 2025
Published Online: Jan. 10, 2025
The Author Email:
CSTR:32186.14.