Opto-Electronic Engineering, Volume. 51, Issue 10, 240158(2024)

Image recognition of complex transmission lines based on lightweight encoder-decoder networks

Yuntang Li*... Wenkai Zhu, Hengjie Li, Juan Feng, Yuan Chen, Jie Jin, Bingqing Wang and Xiaolu Li |Show fewer author(s)
Author Affiliations
  • College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou,Zhejiang 310018,China
  • show less
    Figures & Tables(14)
    Structure of lightweight encoder-decoder network
    Convolutional block attention module
    Bneck-CBAM module
    Depth atrous spatial pyramid pooling module
    Visualization of feature maps at different depths
    Labelme labeling transmission lines
    Network training loss value variation curves
    Comparison of sparse training with different regularization coefficients
    Comparison of four network recognition results for transmission lines
    • Table 1. Training parameters for lightweight encode-decoder network

      View table
      View in Article

      Table 1. Training parameters for lightweight encode-decoder network

      训练参数数值
      Batch_size8
      Initial_lr0.0001
      Epoch500
      CudaTrue
    • Table 2. Results of ablation experiment

      View table
      View in Article

      Table 2. Results of ablation experiment

      方法MPA/%MIoU/%FPS
      方法189.8783.2226
      方法291.4484.0224
      方法390.9283.8631
      方法492.3484.5729
      方法592.6784.6430
    • Table 3. Comparison of sparse training experimental results with different regularization coefficients

      View table
      View in Article

      Table 3. Comparison of sparse training experimental results with different regularization coefficients

      λMPA/%MIoU/%Epoch
      092.6784.64500
      0.0191.5283.77500
      0.00192.0784.12500
      0.000192.5884.56500
      0.0000192.5684.55500
    • Table 4. Comparison of experimental results with different pruning rates

      View table
      View in Article

      Table 4. Comparison of experimental results with different pruning rates

      剪枝率MPA/%MIoU/%FPS参数量/(106)
      092.5884.56305.82
      0.192.3684.39325.27
      0.292.2484.28354.63
      0.392.1684.22374.12
      0.492.1184.19413.57
      0.591.7283.85442.92
    • Table 5. Comparison of four network recognition results

      View table
      View in Article

      Table 5. Comparison of four network recognition results

      网络MPA/%MIoU/%FPS参数量/(106)
      PSPNet[10]81.8673.789178
      U2Net[6]89.7282.31843.99
      文献[7]87.3779.622112.77
      轻量型编解码网络92.1184.19413.57
    Tools

    Get Citation

    Copy Citation Text

    Yuntang Li, Wenkai Zhu, Hengjie Li, Juan Feng, Yuan Chen, Jie Jin, Bingqing Wang, Xiaolu Li. Image recognition of complex transmission lines based on lightweight encoder-decoder networks[J]. Opto-Electronic Engineering, 2024, 51(10): 240158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 8, 2024

    Accepted: Sep. 9, 2024

    Published Online: Jan. 2, 2025

    The Author Email: Li Yuntang (李运堂)

    DOI:10.12086/oee.2024.240158

    Topics