Journal of Innovative Optical Health Sciences, Volume. 10, Issue 2, 1650043(2017)
Spectroscopic analysis of the interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminum (III) phthalocyanines and serum albumins
[1] [1] Weijer R., Broekgaarden M., van Golen R. F. et al., Low-power photodynamic therapy induces survival signaling in perihilar cholangiocarcinoma cells, BMC Cancer 15 (2015) 1014.
[2] [2] Bae Y. C., Ng E. and Geronemus R. G., Successful treatment of two pediatric port wine stains in darker skin types using 595 nm laser, Lasers Surg. Med. 48 (4) (2016) 339–342.
[3] [3] Kawczyk-Krupka A., Bugaj A. M., Potempa M., Wasilewska K., Latos W. and Sieroń A., Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: clinical perspectives, Photodiagn. Photodyn. Ther. 12 (2) (2015) 161–175.
[4] [4] Dolmans D. E., Fukumura D. and Jain R. K., Photodynamic therapy for cancer, Nat. Rev. Cancer 3 (5) (2003) 380–387.
[5] [5] He Y. P., Zheng L. Q., Huang Y. D. et al., Spectroscopic studies of the interaction between tetra-substituted aluminum phthalocyanines and bovine serum albumin, in Proc. SPIE, A Photonics Asia, Beijing, 92682 (2014).
[6] [6] Sadzuka Y., Tokutomi K., Iwasaki F. et al., The phototoxicity of photofrin liposome was enhanced by PEGylated in vitro, Cancer Lett. 241 (1) (2006) 42–48.
[7] [7] Lopez R. F. V., Lange N., Guy R. et al., Photodynamic therapy of skin cancer: Controlled drug delivery of 5-ALA and its esters, Adv. Drug. Deliv. Rev. 56 (1) (2004) 77–94.
[8] [8] Agostinis P., Berg K., Cengel K. A. et al., Photodynamic therapy of cancer: An update, CA Cancer J. Clin. 61 (4) (2011) 250–281.
[9] [9] Chen Z., Zhang Y. X., Wang D. et al., Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection, J. Biomed. Opt. 21 (1) (2015) 018001.
[10] [10] akir D., akir V., Biyiklio lu Z., Durmu M. and Kantekin H., New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer, J. Orgnomet. Chem. 745–746 (2013) 423–431.
[11] [11] Voicescu M., Angelescu D. G., Ionescu S. and Teodorescu V. S., Spectroscopic analysis of the riboflavin-serum albumins interaction on silver nanoparticles, J. Nanopart. Res. 15 (4) (2013) 1555.
[12] [12] Agudelo D., Bourassa P., Bruneau J. et al., Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins, PloS One 7 (8) (2012) e43814.
[13] [13] Peters Jr. T., All about albumin: Biochemistry, Genetics & Medical Applications (Academic Press, California, San Diego, CA, 1995).
[14] [14] Pangeni D., Kapil C., Jairajpuri M. A. and Sen P., Inter-domain helix h10DOMI-h1DOMII is important in the molecular interaction of bovine serum albumin with curcumin: Spectroscopic and computational analysis, Eur. Biophys. J. 44 (3) (2015) 139–148.
[15] [15] Varshney A., Sen P., Rehan E., Subbarao N. and Khan R. H., Ligand binding strategies of human serum albumin: How can the cargo be utilized , Chirality 22 (1) (2010) 77–87.
[16] [16] Ali H., Langlois R., Wagner J. R., Brasseur N., Paquette B. and van Lier J. E., Biological activities of phthalocyanines — X. Syntheses and analyses of sulfonated phthalocyanines, Photochem. Photobiol. 47 (5) (1988) 713–717.
[17] [17] Liu J. Y., Jiang X. J., Fong W. P. and Ng D. K., Highly photocytotoxic 1, 4-dipegylated zinc (II) phthalocyanines. Effects of the chain length on the in vitro photodynamic activities, Org. Biomol. Chem. 6 (24) (2008) 4560–4566.
[18] [18] Bayrak R., Dumluda F., Ak ay H. T. and De irmencio lu I., Synthesis, characterization and electrical properties of peripherally tetra-aldazine substituted novel metal free phthalocyanine and its zinc (II) and nickel (II) complexes, Spectrochim. Acta Mol. Bilmol. Spectrosc. 105 (2013) 550–556.
[19] [19] Bayrak R., Ak ay H. T., Beri F. ., Sahin E., Bayrak H. and Demirba ü., Synthesis, aggregation and spectroscopic studies of novel water soluble metal free, zinc, copper and magnesium phthalocyanines and investigation of their anti-bacterial properties, Spectrochim. Acta A Mol. Biomol. Specrosc. 133 (2014) 272–280.
[20] [20] Ma D., Lin P., Chen L. et al., Synthesis of poly( ethyleneglycol) -poly( L-lysine) diblock copolymer incorporating tetra-( p-sulfoazophenyl-4-aminosulfonyl) phthalocyanine chloride aluminum (III) polyion nanoparticles and its in vitro photodynamic therapy efficacy, Chem. J. Chinese U 33 (7) (2012) 1456–1461.
[21] [21] Li X. Y., He X., Ng A. C. H. et al., Influence of surfactants on the aggregation behavior of water-soluble dentritic phthalocyanines, Macromolecules 33 (2000) 2119–2123.
[22] [22] Hu Y. J., Liu Y., Pi Z. B. and Qu S. S., Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study, Bioorg. Med. Chem. 13 (2005) 6609–6614.
[23] [23] Durmu M., Yaman H., G l C., Ahsen V. and Nyokong T., Water-soluble quaternized mercaptopyridine-substituted zinc-phthalocyanines: synthesis, photophysical, photochemical and bovine serum albumin binding properties, Dyes Pigment. 91 (2) (2011) 153–163.
[24] [24] Jia X., Yang F. F., Li J. et al., Synthesis and in vitro photodynamic activity of oligomeric ethylene glycol-quinoline substituted zinc (II) phthalocyanine derivatives, J. Med. Chem. 56 (14) (2013) 5797–5805.
[25] [25] Jung SeHyun, Choi S. J., Kim H. J. et al., Molecular characteristics of bovine serum albumin-dextran conjugates, Biosci. Biotechnol. Biochem. 70 (2006) 2064–2070.
[26] [26] Tayeh N., Rungassamy T. and Albani J. R., Fluerescence spectral resolution of tryptophan residues in bovine and human serum albumins, J. Pharm. Biomed. Anal. 50 (2009) 107–116.
[27] [27] Lakowicz J. R., In Principles of Fluorescence Spectroscopy, 3rd edn. (Spring, New York, 2006).
[28] [28] Tuncel S., Dumoulin F., Gailer J. et al., A set of highly water-soluble tetraethyleneglycol-substituted Zn (II) phthalocyanines: Synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity, Dalton Trans. 40 (16) (2011) 4067–4079.
[29] [29] Uslan C., Sesalan B. . and Durmu M., Synthesis of new water soluble phthalocyanines and investigation of their photochemical, photophysical and biological properties, J. Photochem. Photobiol. A Chem. 235 (2012) 56–64.
[30] [30] Ranjian M., Diffley P., Stenphen G. and Proce D., Comparative study of human steroid 5α-reductase isoforms in prostate and female breast skin tissues: Sensitivity to inhibition by finasteride and epristeride, Life Sci. 71 (2002) 115–126.
[31] [31] Murov S. L., Carmichael I. and Hug G. L., Handbook Of Photochemistry (CRC Press, New York, 1993).
[32] [32] Ogunsipe A. and Nyokong T., Photophysicochemical consequences of bovine serum albumin binding to non-transition metal phthalocyanine sulfonates, Photochem. Photobiol. Sci. 4 (7) (2005) 510–516.
[33] [33] Filyasova A. I., Kudelina I. A. and Feofanov A. V., A spectroscopic study of the interaction of tetrasulfonated aluminum phthalocyanine with human serum albumin, J. Mol. Struct. 565–566 (2001) 173–176.
Get Citation
Copy Citation Text
Liqin Zheng, Yipeng He, Pingping Lin, Lina Liu, Hongqin Yang, Yiru Peng, Shusen Xie. Spectroscopic analysis of the interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminum (III) phthalocyanines and serum albumins[J]. Journal of Innovative Optical Health Sciences, 2017, 10(2): 1650043
Received: Jan. 29, 2016
Accepted: May. 22, 2016
Published Online: Dec. 27, 2018
The Author Email: Xie Shusen (yirupeng@fjnu.edu.cn)