Infrared and Laser Engineering, Volume. 50, Issue 12, 20210734(2021)

Research on Compton scattering noise in the X-ray Fourier-transform ghost imaging (Invited)

Qingyu Li1,2, Zhijie Tan1, Hong Yu1,3, and Shensheng Han1,3
Author Affiliations
  • 1Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    References(30)

    [1] Shi Y G. A glimpse of structural biology through x-ray crystallography[J]. Cell, 159, 995-1014(2014).

    [2] Kosynkin D V, Higginbotham A L, Sinitskii A. Longitudinal unzipping of carbon nanotubesto form graphene nanoribbons[J]. Nature, 458, 872-876(2009).

    [3] Fleury B, Cortes-Huerto R, Taché O, et al. Gold nanoparticle internal structure and symmetry probed by unified small-angle x-ray scattering and x-ray diffraction coupled with molecular dynamics analysis[J]. Nano Letters, 15, 6088-6094(2015).

    [4] Davis T J, Gureyev T E, Stevenson A W. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature, 373, 595-598(1995).

    [5] Zamir A, Diemoz P C, Vittoria F A, et al. Edge illumination x-ray phase tomography of multi-material samples using a single-image phase retrieval algorithm[J]. Optics Express, 25, 11984(2017).

    [6] Endrizzi M. X-ray phase-contrast imaging[J]. Nuclear Instruments and Methods in Physics Research A, 878, 88-98(2018).

    [7] Miao J W, Charalambous P, Kirz J, et al. Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).

    [8] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [9] Sidorenko P, Cohen O, Idorenko P A S, et al. Single-shot ptychography[J]. Optica, 3, 9-14(2016).

    [10] Yu H, Lu R H, Han S S, et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [11] Pelliccia D, Rack A, Scheel M, et al. Experimental x-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [12] Zhang A X, He Y H, Wu L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [13] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [14] Tan Z J, Yu H, Yang S C, et al. Fourier-transform ghost imaging with polychromatic light[J]. Journal of Modern Optics, 67, 1247-1253(2020).

    [15] Tan Z J, Yu H, Lu R H, et al. Non-locally coded Fourier-transform ghost imaging[J]. Optics Express, 27, 2937-2948(2019).

    [16] [16] Wu Z H , Zhao G Q, Lu F Q. Experimental Methods f Nuclear Physics[M]. Beijing: Atomic Energy Press, 1996. (in Chinese)

    [17] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 98, 041801(2011).

    [18] Agostinelli S, Allison J, Amako K. GEANT4: A simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research. A, 506, 250-303(2003).

    [19] Tian N, Guo Q, Wang A, et al. Fluorescence ghost imaging with pseudothermal light[J]. Optics Letters, 36, 3302-3304(2011).

    [20] Chen M. Ghost imaging based on sparse array pseudothermal light system[J]. Acta Optica Sinica, 32, 503001-503419(2012).

    [21] Schneider R, Mehringer T, Mercurio G, et al. Quantum imaging with incoherently scattered light from a free-electron laser[J]. Nature Physics, 14, 126-129(2018).

    [22] Kim Y Y, Gelisio L, Mercurio G, et al. Ghost imaging at an XUV free-electron laser[J]. Physical Review A, 101, 013820(2020).

    [23] [23] Physics Society of High Energy. Geant4 User Documentation[EBOL].(20211210)https:geant4.web.cern.chsupptuser_documentation.

    [24] Allison J, Amako K, Apostolakis J. Recent developments in Geant4[J]. Nuclear Instruments and Methods in Physics Research A, 835, 186-225(2016).

    [25] Allison J, Amako K, Apostolakis J. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 53, 270-278(2006).

    [26] [26] Biggs F, Lighthill R. Analytical approximations f xray cross sections III[R]. New Mexico: Sia Labaty, 1988.

    [27] [27] Bn M. Atomic Physics[M]. Glasgow: Blackie Sons Ltd, 1969.

    [28] Hubbell J H, Gimm H A. Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV‐100 GeV photons in elements Z=1 to 100[J]. Journal of Physical and Chemical Reference Data, 9, 1023-1148(1980).

    [29] Liu H L, Cheng J, Han S S. Ghost imaging in Fourier space[J]. Journal of Applied Physics, 102, 103102(2007).

    [30] [30] Lu X T, Jiang D X, Ye Y L. Nuclear Physics[M]. Beijing: Atomic Energy Press, 2000. (in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Qingyu Li, Zhijie Tan, Hong Yu, Shensheng Han. Research on Compton scattering noise in the X-ray Fourier-transform ghost imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210734

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Single-pixel imaging

    Received: Oct. 8, 2021

    Accepted: --

    Published Online: Feb. 9, 2022

    The Author Email:

    DOI:10.3788/IRLA20210734

    Topics