Acta Optica Sinica, Volume. 42, Issue 23, 2331002(2022)

Design and Defect Analysis of Sb2S3 Homojunction Thin Film Solar Cells

Youpeng Xiao* and Huaiping Wang
Author Affiliations
  • Engineering Research Center of Nuclear Technology Application, Ministry of Education, East China University of Technology, Nanchang 330013, Jiangxi , China
  • show less
    References(42)

    [1] Wang Q, Chen Z, Wang J Y et al. Sb2S3 solar cells: functional layer preparation and device performance[J]. Inorganic Chemistry Frontiers, 6, 3381-3397(2019).

    [2] Wang X M, Tang R F, Wu C Y et al. Development of antimony sulfide-selenide Sb2(S, Se)3-based solar cells[J]. Journal of Energy Chemistry, 27, 713-721(2018).

    [3] Moon D G, Rehan S, Yeon D H et al. A review on binary metal sulfide heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 200, 109963(2019).

    [4] Zimmermann E, Pfadler T, Kalb J et al. Toward high-efficiency solution-processed planar heterojunction Sb2S3 solar cells[J]. Advanced Science, 2, 1500059(2015).

    [5] Yin Y W, Wu C Y, Tang R F et al. Composition engineering of Sb2S3 film enabling high performance solar cells[J]. Science Bulletin, 64, 136-141(2019).

    [6] Guo L P, Zhang B Y, Li S et al. Scalable and efficient Sb2S3 thin-film solar cells fabricated by close space sublimation[J]. APL Materials, 7, 041105(2019).

    [7] Gao C H, Huang J L, Li H X et al. Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells[J]. Ceramics International, 45, 3044-3051(2019).

    [8] Li W X, Yang J Y, Jiang Q H et al. Electrochemical atomic layer deposition of Bi2S3/Sb2S3 quantum dots co-sensitized TiO2 nanorods solar cells[J]. Journal of Power Sources, 307, 690-696(2016).

    [9] Cai Z H, Dai C M, Chen S Y. Intrinsic defect limit to the electrical conductivity and a two-step p-type doping strategy for overcoming the efficiency bottleneck of Sb2S3-based solar cells[J]. Solar RRL, 4, 1900503(2020).

    [10] Cai Z H, Chen S Y. Extrinsic dopants in quasi-one-dimensional photovoltaic semiconductor Sb2S3: a first-principles study[J]. Journal of Applied Physics, 127, 183101(2020).

    [11] Maiti A, Chatterjee S, Pal A J. Sulfur-vacancy passivation in solution-processed Sb2S3 thin films: influence on photovoltaic interfaces[J]. ACS Applied Energy Materials, 3, 810-821(2020).

    [12] Tang R F, Wang X M, Jiang C H et al. N-type doping of Sb2S3 light-harvesting films enabling high-efficiency planar heterojunction solar cells[J]. ACS Applied Materials & Interfaces, 10, 30314-30321(2018).

    [13] Zhang H, Yuan S J, Deng H et al. Controllable orientations for Sb2S3 solar cells by vertical VTD method[J]. Progress in Photovoltaics: Research and Applications, 28, 823-832(2020).

    [14] Zeng Y Y, Sun K W, Huang J L et al. Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition[J]. ACS Applied Materials & Interfaces, 12, 22825-22834(2020).

    [15] Ishaq M, Chen S, Farooq U et al. High open-circuit voltage in full-inorganic Sb2S3 solar cell via modified Zn-doped TiO2 electron transport layer[J]. Solar RRL, 4, 2000551(2020).

    [16] Deng H, Zeng Y Y, Ishaq M et al. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells[J]. Advanced Functional Materials, 29, 1901720(2019).

    [17] Jin X, Fang Y N, Salim T et al. In situ growth of [hk1]-oriented Sb2S3 for solution-processed planar heterojunction solar cell with 6.4% efficiency[J]. Advanced Functional Materials, 30, 2002887(2020).

    [18] Jin X, Yuan Y, Jiang C H et al. Solution processed NiOx hole-transporting material for all-inorganic planar heterojunction Sb2S3 solar cells[J]. Solar Energy Materials and Solar Cells, 185, 542-548(2018).

    [19] Zhang L J, Jiang C H, Wu C Y et al. V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells[J]. ACS Applied Materials & Interfaces, 10, 27098-27105(2018).

    [20] Ning H, Guo H F, Zhang J Y et al. Enhancing the efficiency of Sb2S3 solar cells using dual-functional potassium doping[J]. Solar Energy Materials and Solar Cells, 221, 110816(2021).

    [21] Jiang C H, Tang R F, Wang X M et al. Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells[J]. Solar RRL, 3, 1800272(2018).

    [22] Han J, Wang S J, Yang J B et al. Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer[J]. ACS Applied Materials & Interfaces, 12, 4970-4979(2020).

    [23] Han J, Pu X Y, Zhou H et al. Synergistic effect through the introduction of inorganic zinc halides at the interface of TiO2 and Sb2S3 for high-performance Sb2S3 planar thin-film solar cells[J]. ACS Applied Materials & Interfaces, 12, 44297-44306(2020).

    [24] Liu Y M, Sun Y, Rockett A. A new simulation software of solar cells: wxAMPS[J]. Solar Energy Materials and Solar Cells, 98, 124-128(2012).

    [25] Wang A S, Xiao Q Q, Chen H et al. Simulation on GaN/Si single heterojunction solar cells[J]. Acta Optica Sinica, 40, 2416001(2020).

    [26] Courel M, Jiménez T, Arce-Plaza A et al. A theoretical study on Sb2S3 solar cells: the path to overcome the efficiency barrier of 8%[J]. Solar Energy Materials and Solar Cells, 201, 110123(2019).

    [27] Islam M T, Thakur A K. Two stage modelling of solar photovoltaic cells based on Sb2S3 absorber with three distinct buffer combinations[J]. Solar Energy, 202, 304-315(2020).

    [28] Xiao Y P, Wang H P, Kuang H. Numerical simulation and performance optimization of Sb2S3 solar cell with a hole transport layer[J]. Optical Materials, 108, 110414(2020).

    [29] Huang L K, Sun X X, Li C et al. Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation[J]. Solar Energy Materials and Solar Cells, 157, 1038-1047(2016).

    [30] El-Sayad E A. Compositional dependence of the optical properties of amorphous Sb2Se3-xSx thin films[J]. Journal of Non-Crystalline Solids, 354, 3806-3811(2008).

    [31] Azri F, Meftah A, Sengouga N et al. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell[J]. Solar Energy, 181, 372-378(2019).

    [32] Lakhdar N, Hima A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3[J]. Optical Materials, 99, 109517(2020).

    [33] Jeyakumar R, Bag A, Nekovei R et al. Interface studies by simulation on methylammonium lead iodide based planar perovskite solar cells for high efficiency[J]. Solar Energy, 190, 104-111(2019).

    [34] Lin L Y, Jiang L Q, Li P et al. A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing[J]. Journal of Physics and Chemistry of Solids, 124, 205-211(2019).

    [35] Raoui Y, Ez-Zahraouy H, Tahiri N et al. Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study[J]. Solar Energy, 193, 948-955(2019).

    [36] Rai S, Pandey B K, Dwivedi D K. Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation[J]. Optical Materials, 100, 109631(2020).

    [37] Kondrotas R, Chen C, Tang J. Sb2S3 solar cells[J]. Joule, 2, 857-878(2018).

    [38] Li G, Huang Y Q, Tang R F et al. An n-n type heterojunction enabling highly efficient carrier separation in inorganic solar cells[J]. Chinese Physics B, 31, 038803(2022).

    [39] Cui P, Wei D, Ji J et al. Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%[J]. Nature Energy, 4, 150-159(2019).

    [40] Zhang L J, Lian W T, Zhao X C et al. Sb2S3 seed-mediated growth of low-defect Sb2S3 on a TiO2 substrate for efficient solar cells[J]. ACS Applied Energy Materials, 3, 12417-12422(2020).

    [41] Lian W T, Jiang C H, Yin Y W et al. Revealing composition and structure dependent deep-level defect in antimony trisulfide photovoltaics[J]. Nature Communications, 12, 3260(2021).

    [42] Wang L, Li D B, Li K H et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer[J]. Nature Energy, 2, 17046(2017).

    Tools

    Get Citation

    Copy Citation Text

    Youpeng Xiao, Huaiping Wang. Design and Defect Analysis of Sb2S3 Homojunction Thin Film Solar Cells[J]. Acta Optica Sinica, 2022, 42(23): 2331002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Mar. 4, 2022

    Accepted: Jun. 13, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Xiao Youpeng (xiaoypnc@ecut.edu.cn)

    DOI:10.3788/AOS202242.2331002

    Topics