Acta Optica Sinica, Volume. 41, Issue 7, 0712002(2021)

Laser Linewidth Measurement Based on Recirculating Self-Heterodyne Method with Short Fiber

Jing Gao1,2, Dongdong Jiao1, Jie Liu1, Xue Deng1, Qi Zang1,2, Xiang Zhang1,2, Dan Wang1,2, Xiaofei Zhang1, and Tao Liu1、*
Author Affiliations
  • 1Key Laboratory of Time and Frequency Standards, National Time Service Center, Chinese Academy of Sciences, Xi′an, Shaanxi 710600, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(22)

    [2] Argence B, Chanteau B, Lopez O et al. Quantum cascade laser frequency stabilization at the sub-Hz level[J]. Nature Photonics, 9, 456-460(2015).

    [3] Deng X, Liu J, Zang Q et al. Coherent phase transfer via fiber using heterodyne optical phase locking as optical amplification[J]. Applied Optics, 57, 9620-9624(2018).

    [4] Zhu T, He Q, Xiao X et al. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution[J]. Optics Express, 21, 2953-2963(2013).

    [7] Okoshi T, Kikuchi K, Nakayama A. Novel method for high resolution measurement of laser output spectrum[J]. Electronics Letters, 16, 630-631(1980).

    [10] Richter L, Mandelberg H, Kruger M et al. Linewidth determination from self-heterodyne measurements with subcoherence delay times[J]. IEEE Journal of Quantum Electronics, 22, 2070-2074(1986).

    [11] Horak P, Loh W H. On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers[J]. Optics Express, 14, 3923-3928(2006).

    [12] Tsuchida H. Simple technique for improving the resolution of the delayed self-heterodyne method[J]. Optics Letters, 15, 640-642(1990).

    [13] Chen X P, Han M, Zhu Y Z et al. Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement[J]. Applied Optics, 45, 7712-7717(2006).

    [14] Huang S H, Zhu T, Liu M et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 7, 41988(2017).

    [15] Mercer L B. 1/f frequency noise effects on self-heterodyne linewidth measurements[J]. Journal of Lightwave Technology, 9, 485-493(1991).

    [17] Ludvigsen H, Tossavainen M, Kaivola M. Laser linewidth measurements using self-homodyne detection with short delay[J]. Optics Communications, 155, 180-186(1998).

    [18] Huang S H, Zhu T, Cao Z Z et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope[J]. IEEE Photonics Technology Letters, 28, 759-762(2016).

    [19] Chen M, Meng Z, Wang J et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 23, 6803-6808(2015).

    [21] Conforti E, Rodigheri M, Sutili T et al. Acoustical and 1/f noises in narrow linewidth lasers[J]. Optics Communications, 476, 126286(2020).

    [22] Jiao D D, Gao J, Deng X et al. Sub-Hertz frequency stabilization of 1.55 μm laser on higher order HGmn mode[J]. Optics Communications, 463, 125460(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jing Gao, Dongdong Jiao, Jie Liu, Xue Deng, Qi Zang, Xiang Zhang, Dan Wang, Xiaofei Zhang, Tao Liu. Laser Linewidth Measurement Based on Recirculating Self-Heterodyne Method with Short Fiber[J]. Acta Optica Sinica, 2021, 41(7): 0712002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Oct. 9, 2020

    Accepted: Nov. 24, 2020

    Published Online: Apr. 11, 2021

    The Author Email: Liu Tao (taoliu@ntsc.ac.cn)

    DOI:10.3788/AOS202141.0712002

    Topics