Infrared and Laser Engineering, Volume. 49, Issue 7, 20190469(2020)

Structural design optimization of space gravitational wave telescope primary mirror system

Figures & Tables(17)
Optical design scheme solid model
Primary mirror system of space gravitational telescope
Schematic diagram of the layout of mirror support structure
Influence of vertex angle values of different layout types on mirror profile and offset
Design model of initial parameters for off-axis parabolic primary mirror
Mirror optimization iteration parameter tradeoff chart
Solid structure diagram of Bipod flexible hinge group
Schematic diagram of non-blocking full flexible hinge group
Flexible support structure model of mirror assembly
Deformation nephogram of optomechanical structure caused by space thermal load and gravity release
Surface error under different thermal loads
  • Table 1. Material properties of primary mirror components

    View table
    View in Article

    Table 1. Material properties of primary mirror components

    PropertiesMaterials
    Zerodur4J36
    Density ρ/g·cm–32.538.13
    Poisson ratio μ0.240.29
    Young’s modulus E/GPa 90.3141.0
    Thermal conductivity/W·(mK)–11.4614.8
    CTE α/(10–7 K–1) 0.070.50
  • Table 2. Optomechanical design parameters for lightweight mirror

    View table
    View in Article

    Table 2. Optomechanical design parameters for lightweight mirror

    NamePARMValue/mmType
    f (rC)表示与rC相关联的参数;f (rC, wB)表示与rC, wB相关联的参数
    Edge wall thicknesst03.5–6.5var.
    Core wall thicknesstC2–4var.
    Front thicknesstF5.5–7.5var.
    Core wall spacingwB55–60var.
    Back thicknesstB2–4var.
    Head radiusrC6.5–7.5var.
    Vertex angle(SP) ΨP50–65 (°)var.
    Support height14–21var.
    Mirror thicknessh026–34var.
    Shank radiusrSf (rC, wB) NA
    Back hole diameterD0f (rC) NA
    Boss depthdB26const.
    Boss sectiondC10const.
  • Table 3. Mirror optimization parameter value after mirror optimization iteration

    View table
    View in Article

    Table 3. Mirror optimization parameter value after mirror optimization iteration

    PARMOptimal value/mmAdoption value/mm
    t04.1134.1
    tC2.0422.0
    tF5.5135.5
    wB57.72257.7
    tB2.1642.2
    rC6.5626.6
    ΨP57.372 (°)57.4 (°)
    hC14.51814.5
    h032.57432.6
    RMS6.050 4 nm6.060 nm
    Mass1.439 kg1.423/kg
  • Table 4. Dimensional parameters of Bipod components

    View table
    View in Article

    Table 4. Dimensional parameters of Bipod components

    PARMValue range/mmANSYS correction/mm
    l14.2–5.64.3
    l2/l38.0–9.49.0
    l44.0–5.04.1
    ti0.9–1.11.0
    wi4.6–5.85.0
    θ029°–34°30°
  • Table 5. Modal of the primary mirror system

    View table
    View in Article

    Table 5. Modal of the primary mirror system

    TypeMode
    12345
    Frequency/Hz415.1431.9786.7934.91106.7
  • Table 6. Mirror shape under thermal load conditions

    View table
    View in Article

    Table 6. Mirror shape under thermal load conditions

    ParameterSpace thermal loadT-gradient
    InitialFinallyAxial 1.0 K
    Δx/nm 6.562.05<0.01
    Δy/nm 0.210.06<1E–4
    Δz/μm 0.850.350.002
    Δθx/nrad 0.09<0.01<0.01
    Δθy/nrad <0.01<0.01<0.01
    Δθz/nrad <0.01<0.01<0.01
    PV/nm55.4031.400.27
    RMS/nm15.468.830.07
Tools

Get Citation

Copy Citation Text

. Structural design optimization of space gravitational wave telescope primary mirror system[J]. Infrared and Laser Engineering, 2020, 49(7): 20190469

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Optical design

Received: Apr. 7, 2020

Accepted: --

Published Online: Sep. 18, 2020

The Author Email:

DOI:10.3788/IRLA20190469

Topics