Acta Optica Sinica, Volume. 43, Issue 24, 2428006(2023)

Retrieval of Temperature Structure and Identification of Gravity Wave Events in the Middle Atmosphere from Rayleigh Lidar Observations

Shaohua Gong1,2, Weipeng Chen1, Guotao Yang2, Jianchun Guo1, Jiyao Xu2, Faquan Li3, Yuru Wang1, Yuhao Zhang1, Yunliang Fu1, Zhenjiang Shen1, Hanjun Liu1, Yingpin Wang1, Shujuan Sun1, Wei Wu1, Jun Liu1, Lü Siqi1, and Xuewu Cheng3、*
Author Affiliations
  • 1College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, Hainan , China
  • 2State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 3Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei , China
  • show less
    References(40)

    [1] Wang C. New chains of space weather monitoring stations in China[J]. Space Weather, 8, S08001(2010).

    [2] Yue C, Yang G T, Wang J H et al. Lidar observations of the middle atmospheric thermal structure over North China and comparisons with TIMED/SABER[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 120, 80-87(2014).

    [3] Gong S H, Yang G T, Dou X K et al. Statistical study of atmospheric gravity waves in the mesopause region observed by a lidar chain in Eastern China[J]. Journal of Geophysical Research: Atmospheres, 120, 7619-7634(2015).

    [4] Gong S H, Yang G T, Xu J Y et al. Gravity wave propagation from the stratosphere into the mesosphere studied with lidar, meteor radar, and TIMED/SABER[J]. Atmosphere, 10, 81(2019).

    [5] Xia Y, Jiao J, Nozawa S et al. Significant enhancements of the mesospheric Na layer bottom below 75 km observed by a full-diurnal-cycle lidar at Beijing (40.41°N, 116.01°E), China[J]. Atmospheric Chemistry and Physics, 22, 13817-13831(2022).

    [6] Hauchecorne A, Chanin M L. Density and temperature profiles obtained by lidar between 35 and 70 km[J]. Geophysical Research Letters, 7, 565-568(1980).

    [7] Lü H F, Yi F. Gravity wave characteristics observed by lidar and radiosonde in Wuhan[J]. Chinese Journal of Geophysics, 49, 1582-1587(2006).

    [8] Liu D, Chen S J, Liu Q et al. Spaceborne environmental detection lidar and its key technologies[J]. Acta Optica Sinica, 42, 1701001(2022).

    [9] Fiocco G, Benedetti-Michelangeli G, Maischberger K et al. Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar[J]. Nature Physical Science, 229, 78-79(1971).

    [10] Wu Y H, Hu H L, Hu S X et al. Atmospheric density and temperature measurement with lidar in the middle and upper stratosphere[J]. Chinese Journal of Quantum Electronics, 17, 426-431(2000).

    [11] Chang Q H, Yang G T, Gong S S. Lidar observations of the middle atmospheric temperature characteristics over Wuhan in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 605-610(2005).

    [12] Dou X K, Li T, Xu J Y et al. Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations[J]. Journal of Geophysical Research: Atmospheres, 114, D20103(2009).

    [13] Batista P P, Clemesha B R, Simonich D M. A 14-year monthly climatology and trend in the 35-65 km altitude range from Rayleigh lidar temperature measurements at a low latitude station[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1456-1462(2009).

    [14] Hines C O. Internal atmospheric gravity waves at ionospheric heights[J]. Canadian Journal of Physics, 38, 1441-1481(1960).

    [15] Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 41, 1003(2003).

    [16] Chanin M L, Hauchecorne A. Lidar observation of gravity and tidal waves in the stratosphere and mesosphere[J]. Journal of Geophysical Research: Oceans, 86, 9715-9721(1981).

    [17] Shibata T, Fukuda T, Maeda M. Density fluctuations in the middle atmosphere over Fukuoka observed by an XeF Rayleigh lidar[J]. Geophysical Research Letters, 13, 1121-1124(1986).

    [18] Beatty T J, Hostetler C A, Gardner C S. Lidar observations of gravity waves and their spectra near the mesopause and stratopause at Arecibo[J]. Journal of the Atmospheric Sciences, 49, 477-496(1992).

    [19] McDonald A J, Thomas L, Wareing D P. Night-to-night changes in the characteristics of gravity waves at stratospheric and lower-mesospheric heights[J]. Annales Geophysicae, 16, 229-237(1998).

    [20] Sivakumar V, Rao P B, Bencherif H. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5°N, 79.2°E)[J]. Annales Geophysicae, 24, 823-834(2006).

    [21] Guan S, Yang G T, Chang Q H et al. New methods of data calibration for high power-aperture lidar[J]. Optics Express, 21, 7768-7785(2013).

    [22] Chen C, Chu X Z. Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 162, 28-47(2017).

    [23] Ferrare R A, McGee T J, Whiteman D et al. Lidar measurements of stratospheric temperature during STOIC[J]. Journal of Geophysical Research: Atmospheres, 100, 9303-9312(1995).

    [24] Cairo F, Congeduti F, Poli M et al. A survey of the signal-induced noise in photomultiplier detection of wide dynamics luminous signals[J]. Review of Scientific Instruments, 67, 3274-3280(1996).

    [25] Sica R J, Sargoytchev S, Argall P S et al. Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system[J]. Applied Optics, 34, 6925-6936(1995).

    [26] Alpers M, Eixmann R, Fricke-Begemann C et al. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and rotational Raman scattering[J]. Atmospheric Chemistry and Physics, 4, 793-800(2004).

    [27] Hu X R, Li F Q, Wang H M et al. Retrieval and verification of mid upper atmospheric temperature from MIGHTI/ICON satellite[J]. Acta Optica Sinica, 43, 1201006(2023).

    [28] Zhang M, Zhang X L, Jin Z et al. Research and application of denoising algorithm for mie lidar signal[J]. Laser & Optoelectronics Progress, 60, 2000001(2023).

    [29] Rauthe M, Gerding M, Höffner J et al. Lidar temperature measurements of gravity waves over Kühlungsborn (54°N) from 1 to 105 km: a winter-summer comparison[J]. Journal of Geophysical Research: Atmospheres, 111, D24108(2006).

    [30] Gardner C S. Reply to Hines' comments on "Testing theories of atmospheric gravity wave saturation and dissipation"[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 663-665(1998).

    [31] Gardner C S. Diffusive filtering theory of gravity wave spectra in the atmosphere[J]. Journal of Geophysical Research: Atmospheres, 99, 20601-20622(1994).

    [32] Senft D C, Gardner C S. Seasonal variability of gravity wave activity and spectra in the mesopause region at Urbana[J]. Journal of Geophysical Research: Atmospheres, 96, 17229-17264(1991).

    [33] Yu Y, Wan W X, Ning B Q et al. Tidal wind mapping from observations of a meteor radar chain in December 2011[J]. Journal of Geophysical Research: Space Physics, 118, 2321-2332(2013).

    [34] Lu X, Liu A Z, Swenson G R et al. Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere[J]. Journal of Geophysical Research: Atmospheres, 114, D11101(2009).

    [35] Gong S H, Yang G T, Liu Z K[M]. Studies on the atmospheric activities with sodium lidars at meridian in China(2014).

    [36] Ding H B, Wang Z Z, Liu D. Comparison of de-noising methods of LiDAR signal[J]. Acta Optica Sinica, 41, 2401001(2021).

    [37] Li S C, Ren T, Zhang P H et al. Near-field signal correction and retrieval technique for Mie scattering vertical scanning lidar[J]. Acta Optica Sinica, 43, 1828001(2023).

    [38] Wilson R, Chanin M L, Hauchecorne A. Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology[J]. Journal of Geophysical Research: Atmospheres, 96, 5169-5183(1991).

    [39] Medeiros A F, Taylor M J, Takahashi H et al. An investigation of gravity wave activity in the low-latitude upper mesosphere: propagation direction and wind filtering[J]. Journal of Geophysical Research: Atmospheres, 108, 4411(2003).

    [40] Zhang S D, Yi F, Wang J F et al. A numerical study on saturation mechanism of gravity wave in mesosphere[J]. Chinese Journal of Geophysics, 44, 454-460(2001).

    Tools

    Get Citation

    Copy Citation Text

    Shaohua Gong, Weipeng Chen, Guotao Yang, Jianchun Guo, Jiyao Xu, Faquan Li, Yuru Wang, Yuhao Zhang, Yunliang Fu, Zhenjiang Shen, Hanjun Liu, Yingpin Wang, Shujuan Sun, Wei Wu, Jun Liu, Lü Siqi, Xuewu Cheng. Retrieval of Temperature Structure and Identification of Gravity Wave Events in the Middle Atmosphere from Rayleigh Lidar Observations[J]. Acta Optica Sinica, 2023, 43(24): 2428006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Feb. 6, 2023

    Accepted: Apr. 3, 2023

    Published Online: Dec. 8, 2023

    The Author Email: Cheng Xuewu (lidar@apm.ac.cn)

    DOI:10.3788/AOS230524

    Topics