Infrared and Laser Engineering, Volume. 50, Issue 12, 20210685(2021)

Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (Invited)

Zhenxu Bai1,2, Hui Chen1,2, Zhanpeng Zhang3, Kun Wang3, Jie Ding1,2, Yaoyao Qi1,2, Bingzheng Yan1,2, Sensen Li4, Xiusheng Yan4, Yulei Wang1,2, and Zhiwei Lv1,2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
  • 4Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
  • show less
    References(39)

    [1] Extance A. Military technology: Laser weapons get real[J]. Nature News, 521, 408(2015).

    [2] Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).

    [3] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [4] Comaskey B J, Beach R, Albrecht G, et al. High average powers diode pumped slab laser[J]. IEEE Journal of Quantum Electronics, 28, 992-996(1992).

    [5] Wang H, Lin L, Ye X. Status and development trend of high power slab laser technology[J]. Infrared and Laser Engineering, 49, 20190456(2020).

    [6] [6] Koechner W. Solidstate Laser Engineering [M]. US: Springer, 2006.

    [7] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 38, 2538-2541(2013).

    [8] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [9] Huo Xiaowei, Qi Yaiyao, Li Yuqi, et al. Research progress of LD-pumped Pr3+-doped solid-state laser in visible wavelength[J]. Electro-optic Technology & Application, 34, 7-15(2019).

    [10] Sharma U, Kim C S, Kang J U. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications[J]. IEEE Photonics Technology Letters, 16, 1277-1279(2004).

    [11] Akbari R, Zhao H, Major A. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb: KGW laser[J]. Optics Letters, 41, 1601-1604(2016).

    [12] Deng Q, Wu D, Kuang Z, et al. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio[J]. Infrared and Laser Engineering, 47, 1230004(2018).

    [13] Alavipanah S K, Matinfar H R, Rafiei Emam A, et al. Criteria of selecting satellite data for studying land resources[J]. Desert, 15, 83-102(2010).

    [14] Vatnik I D, Churkin D V, Babin S A, et al. Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm[J]. Optics Express, 19, 18486-18494(2011).

    [15] Bai Z, Williams R J, Kitzler Ondrej, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement[J]. Optics Express, 26, 19797-19803(2018).

    [16] [16] Boyd R W. Nonlinear Optics[M]. 3 ed, US: Academic Press, 2008.

    [17] Pask H M. The design and operation of solid-state Raman lasers[J]. Progress in Quantum Electronics, 27, 3-56(2003).

    [18] Piper J A, Pask H M. Crystalline raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [19] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers[J]. Journal of Optics, 19, 023001(2017).

    [20] Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 43, 563-566(2018).

    [21] Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering, 50, 20200098(2021).

    [22] [22] Mildren R P, Rabeau J R. Optical Engineering of Diamond [M]. Berlin: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.

    [23] Li Y, Ding J, Bai Z, et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 9, e35(2021).

    [24] Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (Invited)[J]. Infrared and Laser Engineering, 49, 20201076(2020).

    [25] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser[J]. Optics Express, 19, 10857-10863(2011).

    [26] Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser[J]. Optics Letters, 45, 1898-1901(2020).

    [27] Li Y, Bai Z, Chen H, et al. Eye-safe diamond Raman laser[J]. Results in Physics, 16, 102853(2020).

    [28] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm[J]. Optics Letters, 39, 4037-4040(2014).

    [29] Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2= 15 beam[J]. Optics Letters, 44, 2506-2509(2019).

    [30] Yang X, Bai Z, Chen D, et al. Widely-tunable single-frequency diamond Raman laser[J]. Optics Express, 29, 29449-29457(2021).

    [31] Williams R J, Kitzler O, McKay A, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping[J]. Optics Letters, 39, 4152-4155(2014).

    [32] Bai Z, Zhang Z, Wang K, et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method[J]. Nanomaterials, 11, 1572(2021).

    [33] Antipov S, Williams R J, Sabella A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express, 28, 15232-15239(2020).

    [34] Kitzler O, McKay A, Spence D J, et al. Modelling and optimization of continuous-wave external cavity Raman lasers[J]. Optics Express, 23, 8590-8602(2015).

    [35] Williams R J, Spence D J, Lux O, et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond[J]. Optics Express, 25, 749-757(2017).

    [36] Li M, Kitzler O, Mildren R P, et al. Modelling and characterisation of continuous wave resonantly pumped diamond Raman lasers[J]. Optics Express, 29, 18427-18436(2021).

    [37] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 3, 876-881(2016).

    [38] Sheng Q, Li R, Lee A J, et al. A single-frequency intracavity Raman laser[J]. Optics Express, 27, 8540-8553(2019).

    [39] Casula R, Penttinen J P, Guina M, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: Continuous-wave, third-Stokes operation[J]. Optica, 5, 1406-1413(2018).

    CLP Journals

    [1] Zhiwei Lv, Zhongze Liu, Hui Chen, Duo Jin, Xin Hao, Wenqiang Fan, Yulei Wang, Zhenxu Bai. Review of multi-wavelength laser technology based on crystalline Raman conversion (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230420

    [2] Jianing Sun, Yulei Wang, Yu Zhang, Yaoyao Qi, Jie Ding, Bingzheng Yan, Zhenxu Bai, Zhiwei Lv. Thermal effect analysis of LD end-pumped Er:Yb:glass/Co:MALO crystal[J]. Infrared and Laser Engineering, 2023, 52(8): 20230349

    [3] Duo Jin, Zhenxu Bai, Wenqiang Fan, Yaoyao Qi, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lv. Four times linewidth narrowing has been achieved in diamond Brillouin laser[J]. Infrared and Laser Engineering, 2023, 52(8): 20230295

    [4] Ziqin Qi, Wenjie Mao, Hongyan Wang, Xiaolong Zhu, Xinnan Qiu, Huanqia Lu, Haiyong Zhu. End-pumped Nd:YAG/Cr4+:YAG/KTA passive Q-switched cascade Raman laser[J]. Infrared and Laser Engineering, 2023, 52(10): 20230079

    [5] Yakai Zhang, Hui Chen, Zhenao Bai, Yajun Pang, Yulei Wang, Zhiwei Lv, Zhenxu Bai. Multi-wavelength red diamond Raman laser[J]. Infrared and Laser Engineering, 2023, 52(8): 20230329

    [6] Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    [7] LIU Shuo, ZHANG Yaqi, ZHAO Linwan, BAI Zhenxu. Research on Multi-core Hollow Core Photonic Band Gap Fiber for 2 μm Band Laser Transmission[J]. Electro-Optic Technology Application, 2023, 38(1): 21

    [8] Luda Wang, Weichong Wu, Zhanda Zhu, Zhenxu Bai, Yongling Hui, Hong Lei, Qiang Li. Dual wavelength output Nd: YAG solid-state laser based on spectral beam combining[J]. Infrared and Laser Engineering, 2024, 53(1): 20230411

    Tools

    Get Citation

    Copy Citation Text

    Zhenxu Bai, Hui Chen, Zhanpeng Zhang, Kun Wang, Jie Ding, Yaoyao Qi, Bingzheng Yan, Sensen Li, Xiusheng Yan, Yulei Wang, Zhiwei Lv. Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210685

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Jun. 20, 2021

    Accepted: --

    Published Online: Feb. 9, 2022

    The Author Email:

    DOI:10.3788/IRLA20210685

    Topics