Infrared and Laser Engineering, Volume. 50, Issue 12, 20210685(2021)
Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (Invited)
[1] Extance A. Military technology: Laser weapons get real[J]. Nature News, 521, 408(2015).
[2] Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).
[3] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[4] Comaskey B J, Beach R, Albrecht G, et al. High average powers diode pumped slab laser[J]. IEEE Journal of Quantum Electronics, 28, 992-996(1992).
[5] Wang H, Lin L, Ye X. Status and development trend of high power slab laser technology[J]. Infrared and Laser Engineering, 49, 20190456(2020).
[6] [6] Koechner W. Solidstate Laser Engineering [M]. US: Springer, 2006.
[7] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 38, 2538-2541(2013).
[8] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).
[9] Huo Xiaowei, Qi Yaiyao, Li Yuqi, et al. Research progress of LD-pumped Pr3+-doped solid-state laser in visible wavelength[J]. Electro-optic Technology & Application, 34, 7-15(2019).
[10] Sharma U, Kim C S, Kang J U. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications[J]. IEEE Photonics Technology Letters, 16, 1277-1279(2004).
[11] Akbari R, Zhao H, Major A. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb: KGW laser[J]. Optics Letters, 41, 1601-1604(2016).
[12] Deng Q, Wu D, Kuang Z, et al. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio[J]. Infrared and Laser Engineering, 47, 1230004(2018).
[13] Alavipanah S K, Matinfar H R, Rafiei Emam A, et al. Criteria of selecting satellite data for studying land resources[J]. Desert, 15, 83-102(2010).
[14] Vatnik I D, Churkin D V, Babin S A, et al. Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm[J]. Optics Express, 19, 18486-18494(2011).
[15] Bai Z, Williams R J, Kitzler Ondrej, et al. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement[J]. Optics Express, 26, 19797-19803(2018).
[16] [16] Boyd R W. Nonlinear Optics[M]. 3 ed, US: Academic Press, 2008.
[17] Pask H M. The design and operation of solid-state Raman lasers[J]. Progress in Quantum Electronics, 27, 3-56(2003).
[18] Piper J A, Pask H M. Crystalline raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).
[19] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers[J]. Journal of Optics, 19, 023001(2017).
[20] Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 43, 563-566(2018).
[21] Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering, 50, 20200098(2021).
[22] [22] Mildren R P, Rabeau J R. Optical Engineering of Diamond [M]. Berlin: Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.
[23] Li Y, Ding J, Bai Z, et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 9, e35(2021).
[24] Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (Invited)[J]. Infrared and Laser Engineering, 49, 20201076(2020).
[25] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser[J]. Optics Express, 19, 10857-10863(2011).
[26] Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser[J]. Optics Letters, 45, 1898-1901(2020).
[27] Li Y, Bai Z, Chen H, et al. Eye-safe diamond Raman laser[J]. Results in Physics, 16, 102853(2020).
[28] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm[J]. Optics Letters, 39, 4037-4040(2014).
[29] Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2= 15 beam[J]. Optics Letters, 44, 2506-2509(2019).
[30] Yang X, Bai Z, Chen D, et al. Widely-tunable single-frequency diamond Raman laser[J]. Optics Express, 29, 29449-29457(2021).
[31] Williams R J, Kitzler O, McKay A, et al. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping[J]. Optics Letters, 39, 4152-4155(2014).
[32] Bai Z, Zhang Z, Wang K, et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method[J]. Nanomaterials, 11, 1572(2021).
[33] Antipov S, Williams R J, Sabella A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express, 28, 15232-15239(2020).
[34] Kitzler O, McKay A, Spence D J, et al. Modelling and optimization of continuous-wave external cavity Raman lasers[J]. Optics Express, 23, 8590-8602(2015).
[35] Williams R J, Spence D J, Lux O, et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond[J]. Optics Express, 25, 749-757(2017).
[36] Li M, Kitzler O, Mildren R P, et al. Modelling and characterisation of continuous wave resonantly pumped diamond Raman lasers[J]. Optics Express, 29, 18427-18436(2021).
[37] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 3, 876-881(2016).
[38] Sheng Q, Li R, Lee A J, et al. A single-frequency intracavity Raman laser[J]. Optics Express, 27, 8540-8553(2019).
[39] Casula R, Penttinen J P, Guina M, et al. Cascaded crystalline Raman lasers for extended wavelength coverage: Continuous-wave, third-Stokes operation[J]. Optica, 5, 1406-1413(2018).
Get Citation
Copy Citation Text
Zhenxu Bai, Hui Chen, Zhanpeng Zhang, Kun Wang, Jie Ding, Yaoyao Qi, Bingzheng Yan, Sensen Li, Xiusheng Yan, Yulei Wang, Zhiwei Lv. Hundred-watt dual-wavelength diamond Raman laser at 1.2 /1.5 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210685
Category: Lasers & Laser optics
Received: Jun. 20, 2021
Accepted: --
Published Online: Feb. 9, 2022
The Author Email: